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1.      STATEMENT OF THE PROBLEM STUDIED 

Adiabatic shear is the name given to a localization phenomenon that occurs during 

high-rate plastic deformation such as machining, explosive forming, shock impact loading, 

ballistic penetration, fragmentation, ore crushing, impact tooling failure, and metal shaping 

and forming processes. The localization of shear strain has been observe in steels, nonfer- 

rous metals, and polymers. Practical interest in the phenomenon derives from the fact that 

progressive shearing on an intense shear band provides an undesirable mode of material 

resistance to imposed deformation, and the bands are often precursors of shear fractures. 

The localization of deformation is exemplified by the deformed shear band in the 

aluminum alloy 2014-T6, shown in Figure 1, which is taken from Rogers' review article [1]. 

Figure   1.     Deformed  shear band  produced below a  flat-ended 
projectile   in aluminum alloy  2014yT6>   showing  the 
high degree of  shear  in  the  band. 

Precipitate particles and grain boundaries provide the markers for shear strain delineation, 

which is obviously very high in an extremely thin zone of deformation. There is no evidence 

from the microstructure that this was an adiabatic shear band; only the knowledge that the 

deformation was caused by projectile impact would necessitate considering deformation 

heating as a contributing factor in strain localization. Moss [2] used an explosively driven 

punch to shear plugs from Ni-Cr steel plates, and thereby observe strain and strain rates in 

the resulting shear bands. His findings, illustrated in Figures 2 and 3, clearly indicate that a 

maximum shear strain rate as large as 9.4 x 107 sec"1 occurred. 
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Figure 2. Shear strain versus 
distance through an ~ 
adiabatic shear band. 
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Figure 3.  Shear strain rate versus 
distance through an - 
adiabatic shear band. 

Zener and Hollomon [3] observed 32 jum wide shear bands in a steel plate punched 

by a standard die, and estimated the maximum strain in the band to be 100. They recog- 

nized the destabilizing effect of thermal softening in reducing the slope of the stress-strain 

curve in nearly adiabatic deformations, and postulated that a negative slope of the stress- 

strain curve implies an intrinsic instability of the material. 

According to Johnson [4], adiabatic shear bands had been observed by Tresca [5] in 

1878 and Massey[6] in 1921 during the hot forging of platinum. They called them hot lines. 

Recent experimental [7-9] investigations have established that the localization of the 

deformation initiates in earnest at a value of the average strain much greater than the value 

at which the shear stress or the effective stress attains its peak value. Experimental findings 

of Marchand and Duffy [7] on HY-100 steel, and of Marchand, Cho, and Duffy [9] on AISI 

1018 cold-rolled steel indicate that the snear strain localization phenomenon consists of 

three stages. In the first stage, the deformation stays homogeneous. Stage two, stipulated 

ro initiate when the shear stress attains its peak value, involves non-homogeneous deforma- 

tions ot the block.  In stage three, the shear stress drops precipitously and the severely 



deforming region narrows down considerably. Thus, the stability criterion [10] based on 

the stress attaining a maximum value will predict the initiation of stage two rather *han the 

beginning of the intense localization of the deformation. 

We have developed a robust computer code to integrate field equations governing the 

thennomechanical deformations of a viscoplastic body deformed in either simple shear or 

plane strain compression. The code has been used to study the* initiation and growth of 

shear bands with the following objectives: 

(a) identifying the most appropriate constitutive model for the study of shear 

bands, 

(b) assessing the effect of different ways of modeling a material inhomogeneity, 

(c) identifying material parameters that affect significantly the initiation and 

subsequent development of shear bands, 

(d) investigating the interaction among two or more bands, and 

(e) finding the effect of the deformation mode (i.e., simple shear or plane strain 

compression) on the initiation and growth of adiabatic shear bands. 

2.     SUMMARY OF IMPORTANT RESULTS 

From the research completed under this contract, the following salient conclusions 

can be drawn. 

1. Of the five constitutive relations, namely, the Bodner-Panom law, the Litonsia 

law, the Power law, the Johnson-Cook law, and the Wright-Batra law for 

dipolar material ased to model the thermoviscoplastic response oi materials 

in simple shear, .ne Bodner-Partom law and the Wright-Batra dipolar theory 

predict results which are in better agreement with the experimental observa- 

tions of Marchruid and Duffy on HY-100 steel than are the predictions from 

the other three constitutive relations. 



2. The plots of the band width w computed when the ratio of the average shear 

stress in the specimen to the maximum shear stress equalled 0.95, 0.90, 0.85, 

0.80, 0.75, and 0.70 versus the square root of the thermal conductivity k 

revealed that w decreases with a decrease in k for each of the three constitutive 

relations, viz, the Litonski law, the Bodner-Partom law, and the Johnson-Cook 

law, and that the relationship between w and (k)x /2 is not linear. 

3. The consideration of inertia forces delays the initiation of shear bands. For 

materials exhibiting large thermal softening effect in the Litonski law, the 

stress drop within the band is rapid enough to cause an elastic unloading wave 

to emanate outward from the shear band. 

4. When the dependence of material properties upon the temperature is 

accounted for, and the Bodner-Partom law is used to model the viscoplastic 

response of the material, it was found that an increase in the initial tempera- 

ture delayed the initiation of shear bands and resulted in wider bands. 

5. When the initiation and development of shear bands in six ductile and six less 

ductile materials was studied by using the Johnson-Cook law, the homologous 

temperature of a material point at the band center when the shear stress had 

dropped to 85% of its maximum value was found to be independent of the 

defect size, 

6. For dipolar materials, the initiation of the localization process was delayed, the 

shear stress dropped less rapidly, and bands were wider as compared to that for 

the nonpolar case. 

7. For a hollow viscoplastic cylinder containing two ellipsoidal voids symmetri- 

cally located on a radial line with their centers at the midpoints of the cylinder 

thickness, the shear bands initiate at void tips near the inner surface of the 

cylinder and propagate toward this surface. Even though the strain near the 

other void tips is high, no bands were found to diffuse out from them. 



8. The modelling of a material defect by either (i) introducing a temperature 

perturbation, (ii) assuming that the material at the site of the defect is weaker 

than the rest of the material, (iii) there is a non-heat-conducting rigid ellip- 

soidal inclusion, or (iv) there is an ellipsoidal void at the defect site, give 

sirruar qualitative results. 

9. For a bimetallic body containing a thin layer of a weak material, and also an 

ellipsoidal void and deformed in plane strain compression, shear bands also 

originate from points where the thin layer meets the free boundaries and 

propagate into the weaker layer material. These bands propagate along the 

thin layer first and then bifurcate into two bands that propagate into the matrix 

material in the direction of the maximum shear stress. 

10. The rate of evolution of the stress, strain, and temperature at the band center 

in a viscoplastic body undergoing plane strain deformations is different from 

that in the same body deformed in simple shear. For example, the temperature 

rises extremely sharply in the latter case, but rather gradually in the former. 

3.     BRIEF REVIEW OF THE COMPLETED WORK 

The thrust of the research has been to increase our understanding of the physics of 

adiabatic shear banding, delineate the post-localization response of the material find the 

structure within the band, and assess the effect of various material and geometric parame- 

ters on the initiation and development of the shear band. For this purpor 3, a robust 

computer code that gives stable and reliable results, even after the localization has set in 

and the band has formed, has been developed. We first outline briefly results for the simple 

shearing problem, and then for the two-dimensional problems involving plane strain 

deformations of a thermally softening viscoplastic body. Throughout our work, we have 

assumed that softening is caused by the heating of the body due to plastic working, and the 

material can undergo unlimited plastic deformation. 



a.      Results for the Simple Shearing Problem. 

When studying the initiation and growth of shear bands in a body undergoing overall 

simple shearing deformations, we have modeled its material as elastic-viscoplastic that 

exhibits strain-hardening, strain-rate hardening, and thermal softening. A material inho- 

mogeneity or defect has been modeled by either introducing a temperature perturbation or 

by assuming that the block has a non-uniform thickness. We found values of the* material 

parameters in the Bcdner-Partom [11] constitutive relation, Litonski law [12], Johnson- 

Cook law [13], Power law [14], and the Wright-Batra [15] dipolar theory by ensuring that the 

computed shear stress-shear strain curve for a block without any defect matched well with 

that reported by Marchand and Duffy [7] for a HY-100 steel specimen subjected to tor- 

sional loading at room temperature and deformed at a nominal strain-rate of 3300 sec"1. 

The size of the defect was determined by numerical experiments, so that the sharp drop in 

stress occurred at about the experimental value of the nominal strain. Subsequently, 

computed band-width, temperature rise, evolution of the strain within the band, and the 

rate of stress drop for tests done at nominal strain rates of 1600 sec*1 and 1400 sec*1 were 

compared with the experimental findings. This comparison [16] revealed that the predic- 

tions from the Bodner-Partom law and the Wright-Batra dipolar theory are in better 

agreement with experimental observations than those from the other three flow ru1 * <. Each 

one of the five constitutive relations predicted the three stages of the localization phenome- 

non reported by Marchand and Duffy. However, the rate of evolution of the temperature 

within the band and/or the rate of drop of the shear stress within the band depended upon 

the constitutive relation used. 

We [17] have used the Litonski law, the Bodner-Partom law and the Johnson-Cook 

law to model the viscoplastic response of the material and computed results for five 

different values, i.e., 0. 5, 50. 500, and 5000 W/m ° C, of the thermai conductivity k. The 

thickness of the block was assumed to vary smoothly, with the thickness at the specimen 

center hems 5% smaller than that at the outer eases. For each oi these three constitutive 



relations, the rates of evolution of the temperature and the shear strain at the specimen 

center were steepest for k = 0, and decreased with an increase in the value of k. Marchand 

and Duffy [7] defined the band-width as the width of the region over which the shear strain 

equalled its peak value. For most of our computations, this definition will give the band- 

width to be zero. Therefore, we defined the band-width as the width of the region over 

which the shear strain exceeds 95% of its value at the center. The band-width depends 

upon how far the localization of the deformation has progressed, or how much the shear 

stress at the specimen center has dropped. The plots of the band-width w computed when 

the ratio of the average stress in the specimen to the maximum shear stress equalled 0.95, 

0.90, 0.85, 0.80, 0.75, and 0.70 versus (k)1''2 revealed that w decreased with a decrease in 

the value of k, irrespective of the constitutive relation employed, and that the relationship 

between w and (k)1/2 was not linear as asserted by Dodd and Bai [18]. The Litonski law 

and Johnson-Cook law ^ve zero band width for k « 0, but the Bodner-Partom law gave a 

finite value of the band-width-for k * 0. 

We [19] examined the effect of inertia forces on the initiation of shear bands with 

each one of the aforestated five constitutive relations. It was found that the consideration 

of inertia forces delayed the initiation of shear bands. With the Litonski law and when 

inertia forces were considered, the stress drop within the band was rapid enougn to cause an 

elastic unloading wave to emanate outward from the shear band. The difference between 

the computed speed of this elastic unloading wave and (ßip)1-2 was less than \ao. Here 4 

and p equal, respectively, the shear modulus and the mass density of the material of the 

body. No such wave effect was observed with the other constitutive relations. 

When studying the effect of the initial temperature of the specimen upon the initia- 

tion and development of shear bands, we [20] modeled the viscoplastic response oi the 

material by the Bodner-Partom law and accounted for the dependence oi the specific heat, 

thermal conductivity, and shear modulus upon the temperature, it was round that an 

increase in the initial temperature delayed the initiation of shear bands and resulted in 



wider bands. This suggests that at higher initial temperatures of the specimen, larger 

changes of shape can be accommodated without damaging the workpiece due to the 

occurrence of shear bands. 

In an attempt to correlate the information regarding the initiation and development of 

shear bands in different materials, we [21] have investigated the overall simple shearing 

deformations of an elastic-viscoplastic block deformed at a nominal strain-rate of 1500 

sec"1, and made of 12 different materials, namely, OFHC copper, Cartridge brass, Nickel 

200, Armco IF (interstitial free) iron, Carpenter electric iron, 1006 steel, 2024-T351 

aluminum, 7039 aluminum, low alloy steel, S-7 tool steel, Tungsten alloy, and Depleted 

Uranium (DU-0.75 Ti). The thermomechanical response of these materials is represented 

by the Johnson-Cook law, the material parameters are assigned values given by Johnson et 

al. [22], and the thickness of the block is least at its center, and its ends are kept at a con- 

stant temperature. It is found that the localization of the deformation begins earnestly 

when the shear stress at the weakest point has dropped to somewhere between 90 and 95% 

of its maximum value. The ratio of the maximum shear strain within the band to the 

nominal strain is found to depend strongly upon log 8, where <S is the percentage decrease 

in the specimen thickness at the center as compared to that at its edges. Larger defects 

result in more severe localization of the deformation for the same value of the ratio of the 

shear stress within the band to the maximum shear stress. The defect size has very little 

effect on the value of the homologous temperature, defined as the ratio of the absolute 

temperature of a material point to its melting temperature, when the shear stress at the 

specimen center attained its peak value, and when it had dropped to 85% of its maximum 

value. The band-width, defined above, computed when the shear stress at the specimen 

center has dropped to 85% of its maximum value, was found to be much longer for copper 

than for any of the other eleven materials studied. The computed band-width was different 

for the Armco IF iron, 1006 steel, and S-7 tool steel, even though each was assigned the 

same vaiue of the thermal conductivity.  No simple correlation was found between the 



band-width and the thermal conductivity for these twelve materials. 

When dipolar effects, i.e., the strain gradient considered as an independent kinematic 

variable and the corresponding higher order stress included in the balance of linear 

momentum and the balance of energy, were considered, initiation of the localization 

process was delayed, the shear stress dropped less rapidly, and the computed band-width 

was more as compared to the corresponding results for the nonpolar case [23]. The 

band-width and the value of the strain when the shear band initiated decreased monotoni- 

cally and nonlinearly with a decrease in the value of the material characteristic length. 

Also, no unloading wave emanated outward from the severely deforming region in the 

problem wherein such a wave was computed in the absence of dipolar effects. 

b.     Results for the Plane-Strain Problems. 

We [24-26] have analyzed the phenomenon of shear banding in a viscoplastic pris- 

matic body of square cross-section undergoing overall adiabatic plane strain thermome- 

chanical deformations. Two different loadings, namely, simple shearing and simple 

compression, at a nominal strain-rate of 5000 sec"1 are considered. A material defect is 

modeled 1/ either (i) introducing a temperature perturbation at the specimen center, (ii) 

assuming that the material in a narrow region around the center of the specimen is weaker 

than the rest of the material, (iii) there is a rigid non-heat-conducting ellipsoidal inclusion 

(the inclusion simulates an impurity or a second phase particle such as carbide or manga- 

nese sulfide in a steel) at the center, or uv) there is an ellipsoidal void at the center and also 

a narrow horizontal layer of a different material whose yield stress in simple compression 

equals either one-fifth or five times that of the surrounding matrix material. The thermo- 

viscoplastic response of the material was represented by a constitutive relation obtained by 

generalizing Litonski'3 law. In each case, bands of intense shear diffuse out from the point 

abutting the defect and propagate in the direction of maximum shearing. The velocity field 

suffers a sharp jump across the shear band, as asserted by Tresca [5] and .vlassey [o] in 1878 

and 1921, respectively. As the temperature within the band increases, the effective stress in 



it drops and the strain-rate rises. At a point near the inclusion tip or the void tip, the 

effective stress drops first. This is followed, much later, by a sharp increase in the maxi- 

mum principal logarithmic strain e at the same point. The rate of drop of the effective 

stress and the rate of growth of e are much lower than those found in the one-dimensional 

simple shearing problem (e.g., see the Fig.). These differences are possibly due to the 

constraining effects of the relatively strong material surrounding the weakened material 

within the shear band. A similar phenomenon was observed in the study of shear bands 

originating from void tips in a long hollow cylinder whose inner surface is subjected to a 

prescribed radial velocity [27]. Note that the deformations of the cylinder are non- 

homogeneous, even when there are no voids. The shear bands were found to initiate first at 

void tips closer to the center of the cylinder, and propagate toward the inner surface. The 

shear bands originating from the other void tips propagated toward the outer surface of the 

cylinder. 

For the bimetallic body containing a thin layer of a different material and also an 

ellipsoidal void [26], the shear bands initiating from the dps of the void on the major axes 

propagate in the direction of the maximum shear stress. These bands are arrested by the 

strong virtually rigid material of the thin layer, but pass through the weaker thin layer rather 

easily. Other shear bands originate from points at which the thin layers meet the free 

boundaries and propagate into the weaker material. The band in the weaker thin layer 

propagates horizontally first, and then bifurcates into two bands that propagate into :he 

matrix material in the direction of maximum shear stress. Within the band near the void 

'ips, the effective stress drops quite rapidly and the temperature there rises sharply at about 

the same time. However, the sharp rise in the maximum principal logarithmic strain there 

occurs much later because parts of the void near the tips had coalesced. 

Thus, histories of the evolution of the temperature, effective stress, and effective 

strain at a point within a shear band tor the two-dimensional problems are strikingly 

different from those for the one-dimensional simple shearing problem. 

40. 
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Adiabatic Shear Banding in Plane 
Strain Problems 
Plane strain t her mo mechanical deformations of a viscoplastic body are studied with 
the objective of analyzing the localization of deformation into narrow bands of in- 
tense straining. Two different loadings, namely, the top and bottom surfaces sub- 
jected to a prescribed tangential velocity, and these two surfaces subjected to a 
preassigned normal velocity, are considered. In each case a material defect, flaw, or 
inhomogeneity is modeled by introducing a temperature bump at the center of the 
specimen. The solution of the initial boundary value problem bv the Gaierkin- 
Adams method reveals that the deformation eventually localizes into a narrow band 
aligned along the direction oj the maximum shearing strain For both 
problems, bands of intense shearing appear to diffuse out from the center oj tne 
specimen. 

1   Introduction 

Adiabatic shear banding is the name given to a localization 
phenomenon that occurs during high-rate plastic deformation 
such as machining, explosive forming, shock-impact loading, 
ballistic penetration, fragmentation, ore crushing, impact 
tooting failure, and metal shaping and forming processes. The 
localization of the deformation has been observed in steels, 
nonferrous metals, and polymers. Practical interest in the 
phenomenon derives from the fa« that progressive shearing 
on an intense shear band provides an undesirable mode of 
material resistance to imposed deformations, and the bands 
are often precursors to shear fractures. Of the many processes 
just stated in which adiabatic shear bands have been round to 
occur, flat sheet rolling and certain forging operations can be 
modeled as plane strain operations. 

Since the time Zener and Hollomon (1944) recognized the 
destabilizing effect of thermal softening in reducing the slope 
of the stress-strain curve in nearly adiabatic deformations, 
there have been numerous studies aimed at delineating 
material parameters that enhance or retard the initiation and 
growth of adiabatic shear bands. Most oi the effort has been 
concentrated in anahzing the simple shearing problem. Clif- 
ton 11980) and Bai (1981) studied the growth of infinitesimal 
periodic perturbations superimposed on a oody deformed bv a 
finite amount in simple shear. Burns 1.1985) used a dual 
asymptotic expansion to account for the time dependence oi 
the homogeneous solution in the analysis oi the growth oi 
superimposed periodic perturbations. Merzer i, 1982) used the 
constitutive relation proposed by Bodner ana Partom (19"5) 
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to study the problem of twisting oi a thin tubular specimen 
having a notch in its periphery. He concluded that the band 
width depends upon the thermal conductivity Wu and Freund 
(1984) used a different material modei and studied wave pro- 
pagation in in infinite medium. They concluded that the ther- 
mal conductivity has essentially no effect on the width oi a 
sheur band. Other -vorks analyzing the initiation and growth 
of adiabatic shear bands include those due to Clifton et ai 
(1984), Wright ana Batra 11985), Wright and Waiter d98T 
Batra U987\ and Batra and Kim. (1989). Rogers 119^9. 1983) 
and Timothv (198") have reviewed various aspects oi aaiaoauc 
shear banding, especially from a materials point oi *iew 

Experimental studies dealing with adiabatic .hear Danding 
mciude those of Zener and Hollomon 11944), Moss (1981). 
Costin et al. 11979), Lmahotm and Johnson < 1983), ana Mar- 
chand and Duffv ■ 1988) Marchand and Duffy have given a 
detailed historv oi the temperature and strain fields Aitnin a 
oand. 

Needleman < 1989) has recentlv studied fhe initiation and 
growth 3i snear sands ,n piane train deformations jr 
-iscopiastic materials He studied a pureiv mechanical 
proolem and approximated the etfect ot 'hermal softening ?v 
assuming that the stress-strain -urve nas a peak n ,t He 
modeled a material inhomogeneitv bv assuming tnat rne 'low 
stress for a small amount of material near he .enter ot rne 
olock Aas less than that oi the surrounding material W e stud. 
nerein the ihermomechanical plane strain deformations or a 
■hermall) softening . iscoplastic solid and model the mater,ai 
inhomogeneity by introducing a temperature bump at rne 
center oi the block. The block boundaries are assumed to De 
perfectly insulated. Two different deiormation states, nameiv, 
that of a simple shearing of the block, and the blocK deformed 
in simple compression are analyzed. In each case a shear oand 
develops along the direction of maximum shearing .train 
Whereas the deformation localizes at an average compressive 
strain of 0.059 *nen the block is detormed in compression, me 
average shear strain equals 0.22" when the block 'S de- 
formed -n simnie -henr  



2   Formulation of the Problem 

We use a fixed set of rectangular Cartesian coordinate axes 
to describe the thcrmomechanical deformations of the body. 
In terms of the referential description the governing equations 
are 

(pJ)'=Q, (1) 

(2) 

(3) 

and a suitable set of initial and boundary conditions. Equation 
(1) expresses the balance of mass, (2) the balance of linear 
momentum, and (3) the balance of internal energy. In these 
equations, p is the current mass density, p0 the mass density in 
the reference configuration, J is the determinant of the defor- 
mation gradient, v, the velocity of a material particle in the x, 
direction, Qa the heat flux, e the specific internal energy, Tm 

the first Piola-Kirchoff stress tensor, a superimposed dot 
stands for the material time derivative, and a comma followed 
by an index a(j) implies partial differentiation with respect to 
Xa (x,). Also x denotes the present position of a material parti- 
cle that occupied the place X in the reference configuration, 
and a repeated index implies summation over the range of the 
index. For plane strain deformations, *j = X-^ and the indices ; 
and a take on values 1 and 2, 

For the constitutive relations we take 

*«-PI*)I^2MD, r««A^fcAl 

v3/ 
{\-mii-M)m,2D,, = ottJ + vut 

/i-JLtrfi*, ft-D-™(trD)l, 

e = cd + ppiß)/(ppQ). 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Here, J0 is the yieid stress in simple tension or compression, » 
is the coefficient oi thermal softening, parameters b and m 
represent the strain rate sensitivity of the material, B may be 
thought of as the bulk modulus, k is the thermal conductivity, 
and c the specific heat. Equation 0) is a pan of the Tillotson 
11962) equation wherein the dependence of the pressure upon 
the changes in remperature has not oeen considered, and equa- 
tion (8) is the Fourier law of heat conduction. 

Defining s as 

> = ^(p-^trO)l, 

= ZßD. 

equations {4) and (5) give 

(10) 

(11) 

(12) 

wmen can be viewed as a generalized von Mises yield surface 
when the flow stress (given oy the ngnt-hand side of (12)) at a 
material panicle depends upon its strain rate and temperature. 
The linear dependence of the flow stress upon the temperature 
cnange has oeen observed by Bell (1968), Lindhoim and 
Jonnson < 1983), and Lm and Wagoner (1986). A constitutive 
relation similar to equation <4) has oeen used by Z.enKiewicz et 

al. (1981) in analyzing the extrusion problem, by Batra (1988) 
in studying the steady-state penetration of a viscoplastic target 
by a rigid cylindrical penetrator, and by Batra and Lin (1989) 
in studying the steady-state axisymmetric deformations of a 
cylindrical viscoplastic rod upset at the bottom of a 
hemispherical rigid cavity. Equation (4) may be interpreted as 
a constitutive relation for a non-Newtonian fluid whose 
viscosity /i depends upon the strain rate and temperature 

We introduce nondimensional \anables as follows- 

<r = cr/(T0, p=p/o0,s = s/<70,> = v/t,*,,, fa [VQ, H, f = T/a0, 

i = x/Hj = d/90l b = bJLx {nrf.^D/p,, X = X/tf, 

& = p0v$/o0, ß-k/{ßQCV0H), D0 = o„ (p0e), B-B/a0. (13) 

Here, 1H is the height of the block, u0 is the imposed velocity 
on the top and bottom surfaces, and p0 is the mass density in 
the unstressed reference configuration. Substituting from 
equations (4) through (9) into the balance laws (1) through 13), 
rewriting these in terms of nondimensional variables, denoting 
the partial differentiation with respect to i {XJ by a comma 
followed by an index /(a), material differentiation with respect 
to t by a superimposed dot, and dropping the superimposed 
bars, we arrive at the following set oi equations 

p-PU, , =0 (14) 

öv, = Tau. (15) 

9*3e%9a~[\/(\lh)](\-nt\i\ -bf)mDDr       (16) 

*=-fl(p-!)l^- — (\-bl)m(\-ri)D.       (17) 

!*. is simpler to state boundary conditions for the specific 
pi"*blem studied. We analyze plane strain thcrmomechanical 
defamations of an initially-square block of dimension 
2//x IH. The A", ~X2 plane, with the origin of the coordinate 
system located at the center of the block, is taken as the plane 
of deformation. For the simple shearing problem the boun- 
dary conditions are taken to be 

y, = */(/), y,=0, Qa.V, = 0 at ,Y, = ±H. (18) 

«irw.Va-0,e,7,
a.Va-/i<nIf24N1»0at,V. = si/, i\9) 

where n is a unit outward normal and eisa unit sector tangent 
to the surface in the present configuration and N is a unit out- 
ward normal in the reference configuration. Equations (18) 
and (19) imply that the boundaries ot the block are perfectly 
insulated, the top and oottom faces are olaceo n a nard 
loading device and are suojected to a <nown veiocitv aeid On 
the other two faces oi the olocK, zero normal tractions are 
assigned and the tangential tractions are such as to equilibrate 
the ones acting on the top and bottom faces For a known 
function/, the values of h depend uoon the constitutive rela- 
tion for the matenai oi the olock, and hence, are not known a 
priori. As discussed in Section 3, we solve the resulting system 
of equations iterativeiy and find A as a part oi the solution of 
the problem. 

For the simple compression proolem, we restrict ourselves 
to the deformations that remain symmetric aoout ootn .V = 0 
and ^=0. The boundary conditions tor tne quadrant ana- 
lyzed numerically are 

t, =0, r:, =0, Q.iKuh =0. at*, -.V, =0, (20) 

i';=0,r:=0,ö:=0.3tv:=.Y:=0. ,2]) 

,: = C'(0, e T9M, =0. &.\ =0. at X: = H        C3) 

m i« 



That is boundary conditions resulting from the assumed sym- 
metry of deformations are applied to the left and bottom 
faces, the right face of the block is taken to be traction free, 
and a prescribed normal velocity field and zero tangential trac- 
tions are applied on the top face. All four sides of the block 
are assumed to be perfectly insulated. 

In each of the two problems, a material .nhomogeneity or 
flaw is modeled by adding a temperature bump at the center of 
the block to the temperature field that corresponds to a 
homogeneous deformation of the block. 

»: 

3   Finite Element Formulation of the Problem 

In order to avoid having to deal with a severely distorted 
finite element mesh within the region of localization of the 
deformation, we employ an updated Lagrangian formulation. 
Thus to find the deformed shape of the body at time / + Af, we 
take the configuration at time / as the reference configuration, 
and denote the region occupied by the body at time / by Q. At 
subsequent times the current locations of the nodes are com- 
puted and 0 equals the union of the 9-noded quadrilateral 
elements obtained by joining these nodes. No attempt was 
made to ensure that when the deformation localizes, the ele- 
ment sides will be aligned along the direction of the maximum 
shearing strain (cf., Needleman, 1989). However, for the sim- 
ple shearing problem, the element sides are so aligned at the 
initiation of the localization of the deformation. 

We first rewrite equations (14)-(16) so that terms involving 
the partial derivative with respect to time t only are on the left- 
hand side and then use the Galerkin method and the lumped 
mass matnx (e.g., see Hughes (1987)) to derive the following 
semi-discrete formulation of the problem. 

d*F(d,5,/3,d,/n,j>). (24) 

Here, d is the vector of nodal values of the mass density, two 
components of the velocity, and the temperature. Thus the 
total number of unknowns or the number of components of d 
equals four times the number of nodes. The vector-valued 
function F on the right-hand side of equation (24) is a 
nonlinear function of d and of the material parameters 5, £, b, 
m, and v. For a given set of initial values of p, v and d, one can 
deduce the initial conditions on d. The nonlinear coupled set 
of ordinary differential equations (24) are solved by using the 
backward-difference Adams method included in the IMSL 
subr^ ->e LSODE. During the solution of these equations, 
the r „ mial traction on the current position öf the faces 
X{ = ±H as determined from the immediately preceding solu- 
tion, is applied. The subroutine LSODE has the option to use 
the modified Gear method appropriate for stiff equations. 
This could not be used because of the limited core storage 
available on the local FPS164 processor attached to IBM 4381 
computer. For the Adams method, the subroutine LSODE ad- 
justs the size of the time increment adaptively until it can com- 
pute a solution of the nonlinear equations (24) to the prescrib- 
ed accuracy. 

4   Computation and Discussion of Results 

We took the following values of various material and 
geometric parameters to compute numerical results. 

b= 10,000 sec, ^0.0222'C'', a0 = 333MPa, m =0.025, 

k^   \22Wm-14C-i,c = 473Jkg-"C-t,p0 = 7,800kgm\ 

5=128GPa,//^5mm, y0 = 25msec" (25) 

For these choices, #0-89.6*C, the nondimensionai meitmg 
temperature equals 0.5027, and the overall applied strain rate 
is 5000 sec"'  We assigned a ratner large value to the thermal 
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Fig. 1 (a) The shape of the block in the reference configuration and 
after it has been deformed uniformly in simple shear, (5} Stressstram 
curve m simpler shear, and (c) Stress-strain curve in simple 
compression 

softening coefficient v to reduce the CPU time required to 
solve the problem. 

Figure I depicts the block in the undeformed reference con- 
figuration and its shape after it has been deformed uniformly 
in simple shear. Also plotted are the stress strain curves for the 
material defined by parameters (25) when the block is de- 
formed in simple shear and simple compression. It is obvious 
that the softening caused by the heating of the material ex- 
ceeds the hardening due to strain rate effects nght from the 
beginning. This is due to the rather high ' alue of the thermal 
softening coefficient assumed for the material of the block. 
Once the deformation begins to localize, equauons (24) 
become stiff and the maximum size of the time step one can 
use and still integrate these equations to the desired degree of 
accuracy becomes extremely small. Ideally,; one should then 
use the Gear method. But, as stated previously, we could not 
do so because of the limited core storage available The results 
presented and discussed next are up to the moment when the 
deformation has localized into a narrow band. Results com- 
puted earlier for the one-dimensional problem tBatra (1987), 
Batra and Kim (1989), and Wnght and Walter (1987)) suggest 
that the presently computed results represent essentially all of 
the salient features of the localization of the deformation. We 
first discuss results for the simple shearing prooiem, and then 
the compression problem. 

{%) Results for the Simple Shearing Problem, The square 
region in the configuration at time r-0 is divided into 16*16 
amform 9-noded square elements. The velocnv field 

Vi - *•>, IN =0 (26) 

that corresponds to steady shearing of the block, and the 
temperature field 

$ = 0 (27) 

are taken as the initial conditions at time / = 0, ana for the 
boundary conditions we take 

/(/) = 1.0./>G. 

Thus, the effect o\ initial transients is assumed to nave died 
out. This reduces the computational effort required without 
altering noticeably the computed results Suosequent .aicuia- 
tions with sero-inmaJ conditions for t,, :;, ana i have given 
essentially similar results. 



At time t = Q, a temperature bump given by 

16 = 0.:< 1 - r)hxp( - 5r), r = ,Vf ■*■ X] (28) 

was introduced and the resulting initial boundary value 
problem solved. The temperature bump (28) simulates a 
material inhomogeneity or defect; the height of the bump 
represents, in some sense, the strength of the singularity. 
Without the temperature bump or some other mechanism to 
make the deformation nonhomogeneous. the block will 
undergo unlimited simple shearing deformations and no 
localization of the deformation will occur. We note that other 
ways to model an initial imperfection in the body include hav- 
ing a notch (Clifton et al., 1984) and a small region wuh a 
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Fig. 2 isotherm« plotted In the reference configuration at Jffwwrt 
value« of the average strain lor simple shearing deformationa of the 
block:(a)>„,*0. imu*QX -0.15, . . . . 0.10, ——. 0.15,0JM, 
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0.35, 0.40. 0.45, (dW„, »0.215, #mM * 0.44t <«ea part <c> 
(or values of <? correspon^i to different curve»), and (a) T„, »0.227, 
jn*x s 0.463 see part <c) let value« of i corraaponding to different 
curvtsi 

slightly lower value of the yield stress (Needleman, 1989). For 
strain hardening materials the introduction of a temperature 
bump, a notch or a softer region does not, in general, lead to 
the localization of the deformation The average strain at 
which a shear band forms depends upon, among other factors. 
the amplitude and shape of the temperature bumo 

Figure 2 shows isotherms in the reference configuration oi 
the block at four different values of the average strain 7avg. In- 
itially, these isotherms look elliptical because of the different 
choice of scales along the horizontal and vertical axes. The 
temperature bump is symmetrical in *, and x: A reason for 
selecting different scales along the two axes is that the 
isotherms eventually Oaten out and spread to the vertical 
boundaries of the block. Thus, larger scale is chosen along the 
vertical axis to decipher these isotherms. The initial 
temperature equals 0.20 only at the origin. At an average 
strain of 13 percent, the isotherms have changed shape; those 
for a lower temperature look like a rhombus and the ones for 
the higher temperature resemble closed polygons. Because of 
the piastic working and zero heat flux boundary conditions the 
temperature rises everywhere. The heat is continuously being 
conducted outwards from the central hotter region. Near the 
corners of the block deformation is nonhomogeneous (e.g., 
see Fig. 5) and the temperature rise there is more than that at 
other points except possibly near the center of the block. The 
nonhomogeneity of the deformation near the corners is a 
numerical artifact rather than due to the physics of the 
problem. The use of a very fine mesh should reduce the effect 
considerably, but a mesh finer than the one employed here 
could not be used because of the limited core storage 
available. Once the deformation begins to localize, the 
temperature rise within the band is significantly more than 
what it is elsewhere. The temperature contours at average 
strains of 20.8 percent, 21.5 percent, and 22." percent bear 
this out. At an average strain of 22.7 percent the maximum 
temperature at the center equals 92 percent of the presumed 
melting temperature of the material. The isotherms are quite 
narrow m the vertical direction and progressively become nar- 
rower as the deformation localizes. 

Figure 3 depicts the u,-velocity tleid in the reference con- 
figuration of the block at average strains oi 0 percent, 18 5 
percent, 20.8 percent, and 22." percent. Because oi the initial 
temperature  bump,   the deformation   oecomes   nonhomo- 

cig. 3   Vtloc'tY field in tht direction of shearing at several values o< the 
average strain; i«) ^„,=0. \b) 7ttg =0.185, <c> >„gx0 208. and id) 
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gcncous. This nonuiuformity becomes perceptible at an 
average strain of 18.5 percent and is quite noticeable when the 
average strain equals 20.8 percent and 22.7 percent. The 
nonhomogeneity in the deformation at the corners is not 
noticeable in these plots probably because of the scale chosen 
to plot the data. The u, -velocity field appears to stay anti- 
symmetric in x2 even through the localization of the deforma- 
tion. At an average strain of 20.8 percent the shearing strain 
rate at the center is noticeably higher than what it is within ihe 
region LcJ>0.1. During the ensuing deformations of the 
block, the region near the center undergoes intense straining 
and that outside of the domain \x21 <0.1 deforms at a strain 
rate much smaller than the imposed strain rate of 5000 sec"' 
With a finer mesh one could sharpen a bit more the boun- 
daries of the two domains. 
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Rg. 4   Contour» of th« second Invariant I of tho dtvtatoric strain rat« 
itnaor at dlfrarant value« ot tho mrag« strain; («) Yttf »0,155, 
,n„-147;  -   1.5, 2.0, 15, (b)  >t-«0.l9i, 
'„^»4,45;  -  1.5, 2.5, 15, (c) 7§¥t »0-205. 
'ma, »Ml;  -  2.5, 175, —  5.0, (d> Yt« »0.215, 
w »123: - 2.5. 175, -.-.-.. 5.0, and (e) ym »0.227. 
'M! -5.45; - 2.5, ..... • 5.0. 7.5 

In Fig. 4 we have plotted the contours of the second in- 
variant / of the deviatonc strain rate tensor D at different 
stages of the localization process. At an average strain of 18.5 
percent the peak value of /equals 3.47 and it equals 4.45 when 
the average strain is 19.8 percent. We note that these are plot- 
ted in the reference configuration. It is clear that during the 
deformation oi the block from 18.5 percent average strain to 
19 8 percent average strain, the contour o\ / = 2.5 has spread 
out horizontally and become narrower in the vertical direc- 
tion. The various plots u. Fig. 4 give the impression that there 
is a kind of source term for / at the center. Once the deforma- 
tion has started to localize, contours of successively higher 
values of / seem to originate at the center and fan out. They 
spread out in the direction of shearing. As noted earlier, severe 
deformations of the block occur now in this narrow region. 

Figure 5 depicts the distribution of the effective stress se, 
defined as being equal to the right-hand side of equation (12) 
within the block at average strains of 0 percent, 18.5 percent, 
20.8 percent, and 22.7 percent. Initially it looks like an in- 
verted hat because every material point is assumed to lie on its 
yield surface. We note that for the simple shearing problem 
being studied, <j,2 is the only component o( stress having 
significant values. Because of the higher temperature at points 
near the center, the flow stress there is reduced. As the body 
continues to be deformed, the stress distribution within the 
block, and especially in the region surrounding the center of 
the block, alters. The nonhomogeneity of the deformation 
near the corners is now evident. The temperature rise within 
the block reduces the flow stress needed to deform the 
material. Consequently, the value of st drops at all potnts. 
Even though the strain rate invariant / assumes very high 
values at points within the region of localization, the softening 
caused by the temperature rise exceeds the hardening due to 
strain rate effects and the stress drop in the severely deforming 
region is enormous. For very high rate of drop of st, an 
unloading elastic wave emanates outwards from the shear 
band {Batra and Kim, 1989). No such unloading wave was 
observed in this case. It could be due to the coarseness of the 
mesh, the integration scheme used, or the rate of the drop of 
st was not too high. 

The deformed mesh at average strain of 22.7 percent is 
shown in Fig. 6. The relatively severe deformations within the 
region of localization, and nonuniformity of deformations 
near the corners, is evident. 

Fig. 5 (Distribution or th« efi«ctlv« stress within th« block at different 
»alue* of th« average strain; (a) >,-, = 0. (b) >,«, = 0.185. (cK„3 =0.208. 
«id (d)7„g= 0.227 
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Fig. 6   Deformed mesh at an average strain of 0.227 (simple sheering 
deformations of the block) 
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Pig. 7   Isotherms plotted In the reference configuration at different 
values of the average compressive strain; (a) >t¥g*0.0, >m, »0.2, 
- 0.05.  • • ♦ • 0.10, 0.15, (b) 7,^*0.035, 9^*03*, 
- 0.10, .... 0.15. 0.20, 0.25, (c) 7*3*0.040, #„. 
u = 0.313, see Dart (e) for values of i corresponding to different curvee, 
(d) 7,^ =0.045, i^ »0.353, - 0.10, 0.15, —« 0.20, 
 0.25, 0.30,  (•) 'a* «0.055,  #-»* 0.42t,  -  0.15, 

0.20, 0.25,  ---- 0.30, 0.35, and (r) 
>«vg * 0,059, ^u = 0.449, (see part (a) for values of # corresponding to 
different curves) 

ib) Results for (he Compression Problem. Because of 
the assumed symmetry oi the deformation field, the deforma- 
tions oi the block vuhin the first quadrant are analyzed. 
Several trial runs *uhout introducing any temperature pertur- 
oation gelded the following values ot the steady-state 
solution: 

y, = 0.37JC,, o2~ ~x2 (29) 

for an average applied strain rate of 5000 sec"'. Subsequently 
this velocity field, and the temperature field given by equation 
(,28), were taKen as the initial conditions and the initial boun- 
dary value proolem solved. A closer look at the results com- 
puted by Batra U987a, 1987b) for the one-dimensional sample 
shearing proolem reveals mat the ,mai state * here the pertur- 
oation »s introduced has *ery little effect. ,f any, on the 
qualitative   nature   of  -he   results.   Figure  ""   depicts   the 

Fig. 8   Velocity field within the block at different values of th* average 
compreeaive strain; (a) 7iVg » 0, (6) 7avg = 0.045, <c) > av9 ■ 0.059 

temperature distribution at several values of the average com- 
pressive strain. At an average strain of 3.5 percent the 
isotherms have changed in shape from elliptic to rhombus and 
the peak temperature at the center has risen from 0.20 to 
0.286. Because of the nonhomogeneous deformations near the 
top right corner, the temperature rise there is more than that at 
other points within the block except, of course, those near the 
center which are undergoing severe deformations \s the 
temperature plots at average compressive strains of 4 percent, 
4.5 percent, 5.5 percent, and 5.9 percent show vividlv, the 
isotherms spread out diagonally indicating that the material 
around the mam diagonal is deforming severely M these 
average strains the peak temperature occurs at the center and 
equals 0.313, 0.353, 0.426, and 0.449, respectively Thus, the 
rate of temperature rise at the center is small initially, in- 
creases as the deformation begins to localize, and tapers off 
during the late stages of the localization Even tnougn neat is 
oetng conducted out of this central region the heat produced 
due to the plastic dissipation exceeds that lost due to conduc- 
tion. Once the localization process ,s mitiated. *ne neat 
generated due co plastic working becomes quite nign and the 
rate of temperature rise wuhin the „emrai region picks ap 
However, the stress required to deform me material drops and 
thus reduces the energy dissipated due to plastic working This 
and the heat conducted out of the central hotter region ex- 
plains the slow rate of temperature rise during itie iate stages 
of the localization of the deformation. 

In Fig. 8 we have plotted the yr and i:-velocit\ fields at 
average strains oi 0, 4.5 percent, and 5 9 percent Exceot at 
points around the diagonal passing through the top ngnt :or- 
ner, both u, and ts vary slowly and nearly .meariv, 'hereoy 
.implying rhat the material region *ithin 3 narrow zone nn 
Dotn sizes oi the diagonal line .s undergoing severe reforma- 
tions. Figure 9 snows trie contours oi the second .nvanant / D?" 

the deviatonc strain rate tensor at average compressive trams 
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Rg. 9 Contours oi tho socond Invariant / of tho dovtatoric «train rat« 
t«n«or at different V«4UM of tfM «»«mo« comprossivo «train; (a) 
t*9 »0.012, Inn »2.0. - UO, 1.25, -.-.._. 1.50,  
as,wTw-»aoii,/m-I«a,M,-i.o, 1.2S.——. uo, 
 1.75, (0?*,,« 0.025,/„„.« 2.95. -1.0, 1.5,-.  
2.0, 2.5, (d) 7«, * 0.03, /mg, » 3.70, ««• part (e) tor viiiat of I cor- 
rospondino, to dltiartnt eumoa, {•) ^»0.035, ^«5^3, — 1.5, 
 2.0, 2S. 3.0, (0 y^ «0.040, lmm «4.73, - 
2^, 5.0, — • 7.5, (fl) 7wf -0.053, fM «16J2. - 2.5, 
 7.5, — 115, and (ft) 7wg -0.060,1,^ «20.7, - 7.5, 
 12£. 17.5 

of 0.012, 0.018, 0.025, 0.03, 0.035, 0.04, 0.055, and 0.059. As 
for the simple shearing problem, the maximum value of / oc- 
curs at points near the center of the block and these contours 
seem to originate at the center and spread out along and 
perpendicular to the direction of maximum shearing strain; 
their speed probably depends upon the mesh size. Also, the 
width of the severely deforming region depends upon the mesh 
size, too. 

Figure 10 depicts the distribution of the effective stress se at 
average strains of 0, 0.027, 0.045, and 0.059. Initially the 
stress :s uniform everywhere except in a narrow region near 
the center where the flow stress has been reduced due to the 
higher value of the temperature at these points. The plot at 
Ytvi =0.027 reveals that the flow stress has dropped every- 
where due to the rise in the temperature of material particles. 
Still, the effective stress is uniformly distributed except at 
points near the center of the block. It seems that the localiza- 
tion of the deformation begins in earnest at 7av| =0.045. At 
71V| =0.059 the material region around the main diagonal has 
severely deformed. The deformed mesh for yavf« 0.059 is 
shown in Fig. 11. That the band has formed is difficult to 
visualize from the deformed mesh shown. Also, the mesh is in- 
capable of resolving sharp deformation gradients within the 
localized region. 

5   Discussion and Conclusions 

The 9-noded quadrilateral element used herein seems to 
have performed satisfactorily as far as the initiation and some 
growth of the adiabatic shear band is concerned. As for com- 
putations with one-dimensional problems (Batra, 1987a; Batra 
and Kim, 1989), it is probably due to the coarseness of the 
mesh that sharp gradients of the deformation within the 
region of localization could not be completely resolved. This is 
also supported by the recent work of Shuttle and Smith (1988) 
on the numerical simulation of shear band formation in soils. 
Both for plane strain, simple shearing deformations of the 
block and plane strain compression of the block, the shear 
band is formed along the direction of maximum shearing. For 
the compression problem the shear band formed at an average 
strain of 0.059, and for the simple shearing problem it formed 
when the average strain equaled 0.229. The results computed 

a :o7 

3.254 

3 Ji y- p 

Fig. 10   Distribution o< th« etteciiv« stress within the block at different 
<alu«s of th« i\r«f*ga strain: (a) 7«g = 0, <b> >„, = 0-027. (c) >^ = 0.C4S, 
and <d)7„g= 0.059 
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Fig. 11    Daformnd mnih at an tvaragt comprnaaiv« strain of 0.059 

nerein arc m qualitative agreement with those of Needleman 
(1989).  Because of the different constitutive assumptions 
made and the difference in modeling a material inhomogenei- 
ty, it is hard to make any quantitative comparisons- 
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ADIABATIC SHEAR BANDING IN ELASTIC-VISCOPLASTIC 
NONFOLAR AND DIPOLAR MATERIALS 

R.C. BATRA and C.H. KIM 

Universuv ot Missoun-Rolla 

Abstract-Simple shearing deformations of a block made oi an elastic-viscoplasnc material are 
studied. The material ot the block is presumed to exhibit strain hardening, >train-rate harden- 
ing and thermal sottening. The effect of modeling the material ot the block as a dipolar mate- 
rial in which the strain gradient is also taken as an independent variable has oeen investigated 
The uniform tields ot temperature and shear stress in the block are perturbed bv superimpos- 
ing a temperature bump at the center ot the block, and the resulting imtial-boundarv -value prob- 
lem is solved bv the Galerkin-Gear method, it is found that tor simple materials as the shear stress 
wuhtn the region of localization begins to collapse, an unloading elastic snear wave emanates 
outwards from the edges of the shear band. For dipolar materials, the localization ot the deior- 
matton is considerably delayed as compared to that tor nonpolar materials, the shear stress does 
not collapse suddenly but decreases gradually, there is no unloading wave traveling outwards 
from the edges ot the band, and the region ot localized deformation is wider as compared to 
that for nonpolar materials. 

!. INTRODUCTION 

Since the time ZENER and HOUOMON [1944] observed 32 ^m wide shear bands in a steel 
plate punched by a standard die and estimated the maximum strain in the band to be 
100, there has been a considerable amount of research done in understanding factors that 
influence the initiation and growth of adiabatic shear bands. ROGERS (1979,1983) has 
vividly summarized in his review articles the work done on adiabatic shear banding until 
1982. References to some of the other experimental, analytical and numerical studies 
may be found in CLIFTON et al. [1984] and BATRA [1987], 

Recently, MARCHAND and DUFFY (1988) have given a detailed historv oi the temper- 
ature and strain fields within a band. Their experimental observations confirm the earlier 
prediction by WRIGHT and WALTER [1987] that the shear stress within a band collapses 
as the deformation localizes. Wright and Waiter gave details oi the shear band morphol- 
ogy for a rigid viscoplastic material. Herein we also account for d) the material elasticity 
lii) work hardening, and liii) the consideration oi strain gradient as an independent vari- 
able. For simple materials, it is found that as the deformation begins to localize tne shear 
stress collapses and an unloading elastic shear wave travels outwards from the region ot 
severe deformation. For dipolar materials the shear stress drops gradually und there is 
no unloading elastic wave observed. The region oi se* ere detormation is wider tor dipo- 
lar materials as compared to that for nonpotar materials. 

Whereas CLIFTON et at. [1984], WRIGHT and BATRA (1985), and BATRA [198"'! ac- 
counted for the effect of material elasticity, their calculations were not carried rar 
enough in time to see what effect, if any, the material elasticity has once a shear band 
has formed. Wright and Batra, and Batra used, respectively, the forward-ditference 
method and ti.e Crank-Nicoison method to integrate the ordinan differential equations 
obtained by applying the Galerkin approximation to the governing partial differential 



R. C   BATRA and C. H   KIM 

equations. Both these methods became unstable once the deformation started to local- 
ize. The Gear method used by WRIGHT and WALTER [1987] and also employed here en- 
ables us to study the details of the deformation within the severely deformed region. The 
results presented here should help to better understand the mechanics of the shear band 
formation. 

II. FORMULATION OF THE PROBLEM 

Equations governing the thermomechanical deformations of a block of material un- 
dergoing simple shearing motion are: 

The balance of linear momentum, pu = (s - a,v),k, (1) 

The balance of internal energy, pe = -q,, + sv,v + ov,vv. (2) 

Here p ts the mass density, u is the .v-dispiacement and v the .v-velocity of a material par- 
ticle, s is the shear stress, a is the dipolar stress associated with the kinematic variable 
u,vvt q is the heat flux, e is the specific internal energy, a comma followed by v implies 
partial differentiation wtth respect to y, and a superimposed dot signifies material time 
differentiation. For the sake of completeness and brevity, we give only the equations 
which are absolutely necessary for our work. Detailed discussions o( these equations and 
those given below may be found in GREEN, MCINNIS and NAGHDI [19681 and WRIGHT 

and BATRA [1987]. 
COLEMAN and HODGDON [1985] have developed a theory of shear banding in which the 

shear yield stress depends upon the accumulated shear strain y and its second spatial gra- 
dient. For monotonic loading the accumulated shear strain equals the present value oi 
the shear strain y. Previous numerical (e.g., BATRA [1987]) and experimental work (MAR- 

CHAND & DUFFY [1988]) on the'adiabatic shearing problem indicates that peak strain gra- 
dients are of the order of 107 per meter. It seems reasonable to assume that such a 
deforming region will experience a force which opposes these sharp gradients ot ■>, COLE- 

MAN and HODGON [1985] introduced such a force into the theory bv adding, to the ex- 
pression for the stress in the classical flow rule, a term linear in the second spatial 
derivative of -,. Here we account for this force by taking the first spatial derivative ot 
7 as a kinematic variable and account for the effects ot the associated dipolar stress J 

on the deformations of the body. 
We presume that the shear strain > and the shear strain gradient d nave additive 

decompositions into elastic {"u.,d,.) and plastic 17,,, J.,) parts That s. 

7 ■ u,t = 7, - yp% (3) 

d 3 M,U = dt> - dn, (4) 

For the constitutive relations we take 

q = -kd,„ (5) 

S - U7«-. (6) 

0 = •(/„, i") 
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e = c6 + sye + ode, (8) 

yp = .1* (9) 

dp=±o, (10) 
M" 

where k is the thermal conductivity, c the specific heat, ß the change in the temperature 
of a material particle from its temperature in the reference configuration, p is the shear 
modulus, v is the modulus associated with the dipolar effects, t', is a material charac- 
teristic length, and A = A(s,a,ypidp) is positive for plastic deformations and equals 
zero when the deformations are elastic. Ail of the material parameters ß, k< c and v are 
assumed to be constants. 

To decide whether the ensuing deformations are elastic or plastic, we presume that 
there exists a loading function 

J(s,o,yp,dpte) *Kiyp,dp) (11) 

such that for all positive A and real numbers a and b, 

~ (s,o,Aa,AbJ) <0. (12) 
QA 

The function K on the right-hand side oi eqn (11) describes the work hardening ot the 
material. The condition (12) ensures that the equation 

has a unique solution for .1. We make the following choices tor/ and -v 

;=(-- 
-;: ' :       1                              ,   , 

i                                       1 1     i     h t -*  -    i_       - r1" 1' ; \ ~", ■ 14) 
er 1    (1 -a$) 

\  = Ki)\  1   + 
VI)  / 

»I5l 

w = sy() - 7dr. il6l 

The parameter a describes the thermal softening ot the material . h and m its strain- rate 
hardening, /o and n characterize its work hardening, and \„ is the • leid stress n ^ 
quasi-static isothermal lest The parameter * introduced througn eqns (i 5) and (16) ma\ 
be thougnt of as an internal variable, it describes the er feet ot t he nistor\ or the detor- 
manon on the current '*ai ae of tne vield stress in a uuasi-nauc and isothermal test   it 
is referred to as the work hardening parameter below 

Substitution irom (14), i15), (9) and < 10) into il h welds 

29 
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r+7i) -«.(i + Ä)"-««)(i+»4:+^<'j) )      <>7> 

which is to be solved for .1 when plastic deformation is occurring; otherwise .1 is zero. 
The constitutive eqn (17) is a simple variation of the "overstress" idea, due to MALVERN 

[1984], where the overstress in the present case is obtained through the use of a mul- 
tiplicative factor rather than an additive one. When the dipolar effects are neglected and 
the material is presumed to be viscoplastic without any yield surface, then eqn (17) re- 
duces to LITONSKI'S [1977] constitutive relation. 

Before discussing the initial and boundary conditions, we nondimensionalize the vari- 
ables as follows: 

v = Hy,   u m Hü,    i, = ?,H,    ?2 - i':H,   y = 7,   d = d/H,   v = i% 

118) 

5 = K0S,    a = *0t\ä,    < ss Kt)jc,    A = — ,1,    'i - —,    Q = #o0, 
<o 7o 

  = P.     77; = *.   ad0 = a,   by0 = b,   SQ^~-, 
<o pcy0rf- pc 

Here 2H is the height of the block, -/0 is the average strain-rate, r\ is a material char- 
acteristic length, and the overbar indicates the nondimensional quantity. Below we drop 
the overbars and give a summary of the equations in terms of nondimensional variables. 

I i 9) 

(20) 

(21) 

(22) 

pv — \s - ra U)H, 

d = kS,vv -t- -H^ -f J :), 

s = ß(u,v - • 15), 

■1 = (H'jf.H 
.10 

t )• 

•J = 1(5:  - " >J:) 
i23) 

0(5- - 7-)' - (24) 

In writing these equations we have set t = t': = c, = t >ince no information is ^urrentK 
avaiiaoie on their relative magnitudes. This was also done ov WRIGHT and BATRA [198"] 
ana b\ BATRA [1987] Note chat in the energy equation, ail of tne olastic .vorking :s taken 
to oe converted into heat. 
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We presume that the specimen is placed in a hard insulated loading device so that the 
velocity is prescribed on its top and bottom surfaces. With the origin of the rectangu- 
lar Cartesian system of axes located at the center of the specimen, we seek solutions of 
the governing equations which exhibit the following properties. 

u{-ytt) *-u(y,t)>   B{-y,t)=e(y,t),   *<-v,/) « *<*/), 

s{-y,t)=s(y,t),   o(-yj) = -o(y,t). 
(25) 

Thus the problem for the upper half of the block will be solved under the following 
boundary conditions. 

(26) 
v(U) = l,   0,V(U)=O,   J(1,O=0, 

y(0,O=0,   0,V(O,O = O,    (7(0,/) =0. 

Figure 1 depicts a solution of eqns (19) [hrough (24), (26), the initial conditions 

v(y,0) =yt   9(y,Q) = o(y,Q) -s(y,0) =t(y,0) =0 (27) 

and 

p = 3.928 x 10"5,   k m 3.978 x 10"\    a = 0.4973,   jt = 240.3, 

n m 0.09, 40 = 0.017, ö = 5x 106, m - 0.025. 
(28) 

The aforementioned values of various parameters are for a typical steel, the average ap- 
plied strain-rate of 500 sec"', and H = 2580 ^m. However, we have taken a rather large 
vaiue of the thermal softening coefficient a to reduce trie computational effort required 
to simulate the formation of a shear band. The chosen value ot a gives the nondimen- 

z.Or -ISOTHERMAL   CURVE 
a»0.  b*0 

AVERAGE  STRAIN,  y 

020 

rig   ■    Average ->near --tress-average snear strain turv« tor a i-.pn.ai s«ei at a nominal -»train-rate or :>A) -e<. 
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sional melting temperature to be 2.011. For homogeneous deformations of the block, 
a s 0, and the peak (marked as point P in Fig. 1) in the shear stress-shear strain curve 
occurs at a strain of 0.093. The uniform temperature ßQ = 0.1003 in the block when 
7 = 0.0692, corresponding to point I in Fig. 1 is perturbed by adding a smooth temper- 
ature bump 

$(y) =0.1(1 -jr)VSy2, 

and the initial-boundary-value problem described by equations (19M24), (26), and the 
initial conditions 

u(v,0) =y,    j(>\0)=0,    tf(.v.O) »0.1, 

8{y,0) =0.1003 + 0.1(1 -jr)V*»:, (29) 

0 1  " 
s{ v,0) =   1 + ~    <1 - ati( v\0))< 1 4- £)'" 

is solved numerically by using the Galerkin-Gear method. The Galerkin method is used 
to reduce the partial differential equations to coupled nonlinear ordinary differential 
equations which are then integrated by using the Gear method for stiff differential equa- 
tions (GEAR [1971]). We used the subroutine LSODE, taken from the package ODE- 
PACK, developed by HINDMARSH [1983], and employed the option ot using the full 
Jacobian matrix. 

iil. COMPUTATION' ANö öiSCLSsiü'N Ot KhStLlS 

Guided by the work oi WRIGHT and WALTER [1987] on rigid/visco-plastic materials, 
we selected a finite element mesh with coordinates ot node points given by 

and computed results for p - 3, 5, " on the Floating Point Svstem machine. We testeu 
rhese meshes on the problem analyzed by Wngnt and Waiter and obtained results vir- 
tually identical to their findings. This assured us or the accuracy or the code and the ade- 
quacy ot the finite element meshes used. Ml three meshes gave results which were 
essentially indistinguishable trom each other We first present and discuss results tor non- 
polar ((' = 0.0) materials and then for dipolar materials wich \ = 0.01 

111.1   \!onpolar materials 

For homogeneous deformations o\ the block, the peak in the >near >tress->near Ntrain 
curve occurs at an average strain oi 0 093. The temperature perturbation (29) vsas in- 
troduced when the block had undergone detormauons corresponding to point I in Fig. 1 
and rfie resulting initial-boundary-value problem was solved. We recall that IBATRX 



Adiabatic shear banding 133 

Fig. 2. Evolution of the shear stress, plastic strain-rate, temperature and work-hardening parameter at points 
near the center of the specimen for nonpolar materials. 

[1987]) the average strain at which the deformation begins to localize depends upon, 
among other factors, the size and the shape of the temperature perturbation. Figure 2 
shows the evolution of the shear stress, plastic strain-rate, the temperature and the work- 
hardening parameter ^. Initially, the temperature, plastic strain-rate and the work hard- 
ening parameter \j/ increase slowly, and the values of the temperature and * at a point 
differ approximately by the magnitude of the initial temperature bump. When the aver- 
age strain in the block equals 0.1002 the rate oi increase oi the plastic strain rate at points 
near the center of the block rises sharply and shoots up at an average strain ot 0.1011. 
Thus, tor the present problem, the localization ot the deformation begins in earnest at 
an average strain close to 0.1011. 

Figure 3 shows the evolution of the plastic strain-rate and the shear stress during the 
time the severe localization of the deformation is occurring. It is clear trom these plots 
that the shear stress drops to essentially zero in nearly one micro-second even when the 
strain-hardening effects are included. The shear stress stayed uniform throughout :he 
specimen prior to the initiation oi the localization, and during the initial stages ot 
the sudden collapse. But it became nonumform during the time the localization ot the 
deformation was in progress. This prompted us to examine the field variables more 
closely. 

Figure 4 depicts the distribution oi the shear stress and the particie velocity within the 
specimen at intervals ot one-tenth oi a microsecond starting with the time vvhen the 
deformation begins to localize. It is clear that an unloading elastic shear wave emanates 
outwards from the region oi severe deformation. The emanation oi the elastic unload- 
ing wave is probably associated with the sudden collapse ot the shear stress wuhin the 
band. The computed speed, 3P8 m> sec, oi the wave essentially equals iß, p)1 :, since 
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Fig. 3. Collapse of the shear stress and rise ot the piacnc strain-rate during the localization ot the deforma- 
tion tor nonpolar materials 

r^      /80xl09\12 

7860 
» 3,i90m/sec. 

It takes 0.807 ^s for the shear wave to reach the outer boundary from which it is 
reflected back with a negative value of the shear stress. The numerical calculations were 
not pursued any further. 

Figures 5 and 6 depict, at different times, the panicle velocity, temperature, plastic 
strain-rate, work-hardening parameter tf, and the shear stress within the region of lo- 
calization. These results show that the calculations stay stable throughout the severe lo- 
calization of the deformation, The plots of the plastic strain-rate and y vs. y at different 
times indicate that the region of severe deformation becomes smaller with time. Even 
though the values of $ at points near the center o\' the specimen keep on increasing 
monotonically, those of yp begin to oscillate. A possible explanation for this is that 

"gMqgyuaum1 

«.--i^r.^i 

iisr vv ! ' s-)M .in i ÄPM f'|[      , s   T 3 

Fig *   Distnoution ot rne shear stress *nü :he oarticse veioucv witmn ?ne soecimen at .afferent  .mes «jur- 
.ng the  ocauzatson ot 'he deformation 'or nonooiar mater*ais   Tnese carves are -lotted ui .mervjis  *t 
0 i pis Mih carve I at / = o4 0 as, «.yrvc - at.' = f>J i »a vur\e 3 at: = f>4 2 «o.        and LUrve iO at: - "vt 9 *> 
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DISTANCE FROM TUE CENTER X    0* DISTANCE FROM THb C.fNTFR   x     0' 

Fig 5 Evolution or the panicle velocity, work- 
hardening parameter *, and plastic strain-rate 
within the region ol localization tor nonpoiar 
materials See Fig. 4 ror times at which these 
curves are plotted 

J C 

DISTANCE (ROM THE CfcNTERX  .05 

there is a diffusive term present in the energy equation, but there is no such term in the 
equation representing the evolution of \j/ with time. Because of the sharp temperature 
gradients at points near the center of the specimen, the rate of heat conducted out of the 
region of localization is high and at times balances the rate of heat generation due to 
plastic working. When this happens, the softening of the material caused by the rise in 
us temperature cannot overcome the hardening due to the increase in the value of * and 
the plastic strain at that material point drops significantly. This in turn reduces the bhear 
stress required for the material to deform plastically because of the reduced hardening 
due to plastic strain-rate effects. Hence the plastic strain rate begins to increase again 

•>IS 1 \\< t     A()\1 1 ill     . v.] ft <     , MM \\( 1   I i«>M tilt < l * It 4 

Fig  n   Evolution or the -»near stress and temperature Mthw (tie region or localization ;or lonooiar materi- 
als  See Fig. 4 for times at *mcn these ,ur\es are oiotted 
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and the phenomenon is repeated though not with any periodicity. The nondimensional 
plastic strain-;ate drops at the center by nearly four-tenth of a million during each one- 
tenth of a micro-second beginning at I = 64.2 /is, 64.6 ps and 64.8 p$. 

We now try to write the preceding explanation in the form of an equation. During the 
time the localization of the deformation is progressing, it is reasonable to assume that 
material particles near the center of the specimen are deforming plastically. Equation (17) 
then gives 

dip =  
m 

ds       add ndii 

s      1 - a$     'h + I. 

Note that ds < 0, dB > 0 and d\b > 0. "I herefore, if the middle term on the right-hand 
side is not larger than the sum of the magnitudes of the other two terms, d*,p will be 
negative. If the effect of work hardening is neglected, then the relative temperature rise 
has to overcome the relative drop in stress for dy„ to be positive. 

We note that when the shear stress begins to collapse, the temperature at the center 
of the band equals 76.9wo of the presumed melting temperature of the material. It rises 
to 9607b of the melting temperature wtthin 0.9 ^sec and then increases extremely slowly. 
MARCHAND and DUFFY [1988] estimated the maximum temperature within the shear 
band to be nearly 75°^o of the melting temperature of the structural steel tested. Since 
there is no failure or fracture criterion included herein, our calculations may have been 
earned too far in time. 

One possible way to define the width of a shear band is to equate it to the width o( 
the severely deformed region when the unloading elastic wave emanates outwards from 
this region. This definition gives the width of the shear band for the material model be- 
ing studied here to be 0.6 ^m which does not compare well with those observed experi- 
mentally. The difference between the computed and the observed values couid be due 
to the choice ot the values of the material parameters and, or the constitutive relations 
used. The inclusion of nonlocal effects, as discussed below, does increase the width ot 
the severely deformed region. 

111.2 Dipolar materials 

In Fig. * is plotted the evolution of the snear stress j, the dipolar stress ;. the temper- 
ature change tf and the plastic strain-rate *.a vvnen •' is ^et equal to 0.01 Now tne snear 
^ress drops graduatlv rather rhan suudeniv. and tne plastic -cram ^ate Joes aot attain 
the enormously nigh values it achieved tor nonpolar materials. Also the localization ot 
the detormation s delayed considerably as compared to that :or nonpolar materials. At 
points where the magnitude ot tne gradient ot tne dipoiar stress is maximum, the shear 
stress attains minimum values. Since Fs is - <'o.j acts as a flux tor the anear momen- 
tum and s< m [s1 - <J

:
)' 

: as the effective stress tor determining wnether the material 
pamde is deforming eiastically or plastically, we have plotted these in Fig. 3. As tor the 
nonpoiar case, the flux Fot the linear momentum stays uniform throughout tne DIO^K 

and drops in value first graouailv and later on rather marpiy The >narp drop .n F >\ as- 
sociated with the rapid heating ot the material during tne final stages ot ne localization 
of the deformation. Because ot the assumption 7<0.;r) = 0. se - s tx tne .enter ana, 
fheretore. sv drops noticeably at the jenter due to the softening at tne material .aused 
by tne rise .n 'emperature  The negative -aiues ot i  mpi> that A., exceeds      ,   Tne 
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Fig. "   Evolution oi the shear stress, dipolar stress, temperature and plastic strain-rate at points near the center 
ot the specimen for dipolar materials with t - 0.01 

larger values of a\ at points away from the center make the effective stress su bigger 
there. The point where se assumes maximum values moves towards the center o( the 
block as the deformation proceeds but becomes stationary when the deformation begins 
to localize severely. In Figs. 9 and 10 we have plotted the distribution ot (he particle 

Fig i Oistnoutiort at trie flux ot me unear momentum and the itfe^'uve -tress Auhin the >neumen at all- 
erem times uunnii tne lotai^tion of the Jetormauon '.or uipoiar inater.als urnes 'Or ne nM .<( ne<-s ^-.uus 

are- .urve 1. .' = 0 0 as. .urve 2. t - 50 ^s, „une 3, ; = i(X) as. »une a = 50 „•> -ar-.e * = HO a, 
-ur\e 6. . = 185 us, ..arv? ".    - ,90 *$, ..urve 1    - .V? as 
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Fig. 9 Distnbution of the plastic strain-rate, tem- 
perature and particle velocitv at different umes Sor 
dipolar materials See Fig S for umes at which 
these curves are plotted 
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speed, temperature, plastic strain-rate, s and J within the specimen at different times. 
It is obvious that there is no unloading wave emanating outwards from the severely 
deformed region. This is to be expected since the governing equations for r" * 0 do not 
have real characteristics. The particle speed increases from the prescribed value of zero 
at the center of the specimen to 1.14 at the edge of the severely deformed region, and 
then almost linearly to the prescribed value of 1.0 at the outer boundary of the speci- 
men. The temperature and the plastic strain-rate at the center continue to increase. 

In order to decipher the details of the deformation at points near the center ot the 
specimen, we have plotted in Tigs. 11 and 12 several field variables within 0 < y < 0.10 
and at different times. These figures show vividly that the temperature and the work- 
hardening parameter have attained steady values at points for which 0.01 "5 <y< 0.10. 

# 

Fig   !0   D'.sirtoution oi me ^near stress ana me juoosar ^ress at different umes tor iipoiar materials   ^ee 
F'dZ   3 ;or ,:mes at which m.ese ^ur\es jre oioued 
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Fig, 11 Disinbution or the plastic strain-rate, 
temperature and work-hardening parameter * at 
points near the center ot the specimen ror di- 
polar materials. See Fig $ tor times at which these 
curves are plotted 

The shear stress continues to drop and is minimum not at the center but at a point 
slightly away from it. The temperature at points near the center of the block continues 
to rise and has essentially uniform values in the region 0 ^ y < 0.01. Even though the 
shear stress at some points becomes negative for / > 190 ^sec, the flux F of linear 
momentum is still positive throughout the block. Up to the time these computations have 
been performed, the peak temperature has not reached the presumed value 2.011 of the 
melting point of the material. Since the severely deforming region is still narrowing 
down, it is unclear as to how to define the band width or when to itop the numerical 
computations for the dipolar case. One possibility is to end the computations when s at 
any point in the domain becomes zero and regard the width ot the severely deformed 
region as equal to the band width. According to this criterion, the width or the heavilv 

Fig   12, Dismouuon ot the snear stress and dipolar -tress at joints near   ne writer it   tie -pec.men   ^ee 
Fia  S tor times at wmch these curves are piotieü 
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deformed region, computed for i - !90 ßs, equals 2 x 0.0129 x 2580 = 66.4 /^m. This 
value is close to those observed experimentally, but the experimentally observed (MAR- 

CHAND & DUFFY (1988]) quick drop of the shear stress is not predicted by the dipolar the- 
ory. Since the value of f was arbitrarily chosen to be 0.01, there is some room for 
adjustment. WRIGHT and BATRA [1987] did compute results for t' = 0.001, but the cal- 
culations were not carried far enough in time. 

BATRA and KIM (1988], using the present material model, have computed results for 
C as 0,005, 0.001 and 0.0005. Their computations show that as f is decreased from 0.01 
to 0.0005, the computed band width decreases from 66.4 ^m to 1.0 ^m, the maximum 
plastic strain-rate at the center increases from 139 to 99,606, and the average strain when 
the shear stress first becomes zero decreases from 0.1642 to 0.1023. There was no un- 
loading elastic wave observed for any of these three values of the material characteris- 
tic length t\ 

IV. CONCLUSIONS 

It is shown that when the uniform temperature field in an elastic/ viscoplastic block 
undergoing simple shearing deformations is perturbed, the deformation localizes. During 
the localization of the deformation, the stress collapses quickly for nonpolar materials 
but decreases to zero gradually for dipolar materials. For nonpolar materials, the sharp 
drop of the shear stress in the narrow region undergoing severe deformations results in 
an elastic unloading wave to travel outwards from this region to the outer boundaries 
of the specimen. Both for dipolar and nonpolar materials the temperature and the work 
hardening parameter continue to increase. Whereas, for dipolar materials, the plastic 
strain-rate keeps on increasing within the region of the localized deformation: for non- 
polar materials, the plastic strain rate oscillates indicating the competing effects or ther- 
mal softening and hardening due to plastic strain and plastic strain-rate. 
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ADIABATIC SHEAR BANDING IN DYNAMIC PLANE STRAIN 
COMPRESSION OF A VISCOPLASTIC MATERIAL 

R.C BATRA and DE-SHIN LIU 

University of Missouri-Rolla 

Abstract-Dynamic plane strain thcrmomechanical deformations ot a thermally softening vis- 
coplastic body subjected to compressive loads on the top and bottom taces are studied with 
the objective ot exploring the effect ot (a) modeling the material inhomogeneitv bv introduc- 
ing a temperature perturbation or assuming the existence ot a weak material within the block, 
(b) introducing two detects >vmmetncallv placed on the vertical axis of the block The effect 
ot setting the thermal conductivity equal to zero is also -studied in the latter case. It is round 
that, irrespective of the wav the material inhomogeneitv is modeled, a shear band initiates 
from the sue ot the defect and propagates in the direction ot maximum shearing stress. The 
value °! the average strain at the instant o( the initiation ot the band depends upon the strength 
of the material defect introduced. Once the shear band reaches the boundaries ot the block 
it is reflected back, the angle of reflection being nearlv equal to the angie ot incidence 

I. INTRODUCTION 

Adiabatic shear banding refers to the localization of the deformation into thin narrow 
bands of intense plastic deformation that usually form during high-rate plastic defor- 
mation. These bands often precede shear fractures. The experimental work in this area 
is due to ZENER and HOLLOMON [1944], COSTIN et ai. (1980!, Moss (1981), LINDHOLM 

and JOHNSON [1983], HARTLEY, DUFFY and HAWLEY (1987], and MARCHAND and DUFFY 

(1988). HARTLEY et at. [1987], and MARCHAND and DUFFY (1988], have given a detailed 
history of the temperature and strain fields within a band formed in a chin steei tube 
deformed in simple torsion. 

During the last ten years, there have been numerous studies aimed at analyzing [he 
initiation and growth of shear bands in the one-dimensionai simple shearing problem. 
For example, CLIFTON (1980] and BAI (1981] analyzed the growth of infinitesimal peri- 
odic perturbations superimposed on a body deformed by a finite amount in simple 
shear. BURNS (1985] used a dual asymptotic expansion to account for the time depen- 
dence of the homogeneous solution in the analysis ot the growth ot superimposed pe- 
riodic perturbations. Other works include those ot VIERZER [1983], Wu and FREUND 

(1984], CLIFTON et at. (1984), COLEMAN and HODGDON (1985], WRIGHT and BATRA 

(1985], WRIGHT and WALTER (1987], BATRA (1987a. 1987b], ZBIB and AIFANTIS (1988), 
and BATRA and KIM (1990]. We note that ROGERS (1979,1983) and TIMOTHY [1987] nave 
reviewed various aspects of shear banding, and ANAND et ai. (1988] have generalized 
one-dimensionai stability analysis of CLIFTON (1980] to three-dimensional prooiems. 

Recently LEMONDS and NEEDLEMAN (1986a, 1986b], AN AND et at. (1988], NEEDLE- 

MAN [1989], BATRA and Liu (1989), and SHUTTLE and SMITH (1988] nave studied the 
initiation and growth of shear bands in plane strain deformations oi a softening mate- 
rial. Except for Needleman, and Batra and LJU, these works neglected the effect or 
inertia forces Batra and Liu studied the coupled thermomecnamcal deformations ot 
a thermally softening vtscoplasttc solid and modeled the material innomogeneitv bv 
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introducing a temperature bump at the center of the block whose boundaries were taken 
to be perfectly insulated. Two different loadings, nameiy, those corresponding to sim- 
ple shearing and simple compression of the block, were considered. Here, we examine 
the effect o( (a) modeling the material inhomogeneity in two different ways, namely, 
introducing a temperature perturbation and assuming the existence of a weak mate- 
rial, (b) introducing two defects placed symmetrically on the vertical axis of the block, 
(c) varying the reduction in the flow stress of the weak material, and (d) two different 
sets of initial conditions. 

II. FORMULATION OF THE PROBLEM 

We use an updated Lagrangian description (e.g., see BATHE [1982]) to analyze the 
plane strain thermomechamcal deformations of the viscoplastic body. That is, in or- 
der to solve for the deformations of the body at time (/ + J/), the configuration at 
time t is taken as the reference configuration. However, it is not assumed that the defor- 
mations of the body from time t to time [t + J/J are infinitesimal. With respect to 
a fixed set of rectangular Cartesian coordinate axes, we denote the position o\ a mate- 
rial particle in the configuration at time / by X,x and in the configuration at time 
U + -1/) by x,. In terms of the referential description the governing equations are 

(fiJ)  =0, (2.1) 

Po», = Tla,a, (2.2) 

Poe - -Qa,a + Tlau,ai (2.3) 

supplemented by appropriate constitutive relations, and initial and boundary condi- 
tions. Equations (2.1), (2.2), and (2.3) express, respectively, the balance ot mass, the 
balance ot linear momentum, and the balance of internal energy Here p is the mass 
density of a material particle in the current configuration at time t •*■ J/, p0 its mass 
density m the reference configuration; a superimposed dot indicates a material time 
derivative; J = p0/p equals the determinant of the deformation gradient F,t s x. ,, 
v, is the velocity of a material particie in the ^-direction. T,n is the first Piola-Kircnotf 
stress tensor; a comma followed by a(i) implies partial differentiation with respect 
to X^{x,y, a repeated index signifies summation over the -ange ot the index; t us the 
internal energy per unit mass; and Ou is the heat flux. We assume that plane strain 
deformations occur in the ,V, - X: plane, so that x, ~ Y\ and the indices i ana a range 
over 1.2. 

We note that even when the applied overall strain-rate is kept tixed, different mate- 
rial panicles undergo deformations at varying strain-rates. During the course ot a ioading 
process ;n which a snear band forms, the temperature oi a material particie may also 
increase considerably A constitutive relation mat ^an model the material response over 
changes in plastic strain-rate and temperature of several orders of magnitude is needed 
to properiy analyze the shear band prooiem. HARTLEY et ai. [1987], and MARCHAND 

ana DUFFY [1988], have proposed a power law that seems ;o descnoe adequa|el\ the 
simple shearing deformations o( the steels tested. However, a constitutive reiation JD- 

plicable to more general delormations is not readily available .n tne ooen :iterature 
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Here we assume that the following constitutive relations describe adequately the mate- 
rial response: 

a,, - -p(p)6tJ + IßDtj, 

T!a = {p0;p)Xn,jOtn (2.4) 

2n = [<r0/(v3/)J(l - ¥0)(\ + bl)'\ 

lD,j - v,,j + »hn (2.5) 

2/2 = Dt)Djn   Ay = DtJ - (!/3)A*ö»y. (2.6) 

p(p) s 5(p/pr - 1), (2.7) 

Ö.« = -*(pn/p)-V.,,«U (2.8) 

/»0(, = pf)c0 + ßnpp{ß),ß:. (2.9) 

Here, a,, is the Cauchy stress tensor, J„ is the yield stress in a quasi-static simple ten- 
sion or compression test, v is the coefficient oi thermal softening, Dlt is the deviatonc 
strain-rate tensor, D,} is the strain-rate tensor, 57 is the Kronecker delta, B may be 
interpreted as the bulk modulus, pr is the mass density in the stress free reference con- 
figurations, c is the specific heat, k is the thermal conductivity, and parameters b and 
m describe the strain-rate sensitivity of the material. The material parameters b; m, 
B, k, and c are taken to be independent of the temperature. Equation (2.8) is the Fou- 
rier law of heat conduction, and eqn (2.4), may be interpreted as a constitutive rela- 
tion for a non-Newtonian fluid whose viscosity p depends upon the temperature and 
the strain-rate. Alternatively, defining stj by 

s„ = a., + [p - (2/3)nDu]oll (2.10) 

= 2uD,n (2.in 

we can write eqns (2.4) and (2.5) as 

[(I. 2)<s,,i„}]' : = [a.tt vl](l - v0){\ - blY" (2 12) 

which can be viewed as a generalized von Vlises vieid surface when the How ■»t-e«,, .given 
by the right-hand side oi (2 12)) at a material particle depends upon its strain-rate and 
temperature. That the How stress decreases lineariy with the temperature rise aas oeen 
observed by BELL [1968], LINDHOLM and JOHNSON [1983], and LJN and WAGONER [1986] 
The range oi temperatures examined by these investigators ts not ab large a:> that ex- 
pected to occur :n the shear band problem. However, constitutive relations akin to 
eqn (2.4) have been used by ZIENKIEWICZ et al [1981] for analvzing the extrusion prob- 
lem, by BATRA [1988] in studying the steady-^tate penetration oi a wscoplastic target 
by a rigid cylindrical penetrator. and by BATRA ana LIL [1989] ror ^tuuving rhe shear 
band problem. 
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In terms of the nondimensionai variables 

Q = <J/O0,    p = p/<J(ti    s = S/ff„,    v = v/y„, 

I = tv0/H,   t = T/a0, 

x = x/H,   B=d/d01   5 = b{v0/H)t   v = i>601 

P   =  p/Pri      p   = 0o/pP,      X   =   \/H, 

6 = prv~/<j0,   3 = k/{prcv0H), 

d„ = a„/(prc),    ß = 5/a,„ 

the governing equations can be written as 

ft «t- pV, , a 0, 

$pi>, = 7;a<u, 

p0 = 30,„ + (p/p,) (l/(v3/)](l +WH1 -v0)DtJDin 

a„ « -B(p - 1)6,, + (l/v3/)] (1 + W)ffl(l - »0)0„. 

(2.13) 

(2.14Ü 

(2.15) 

(2.16) 

(2.17) 

where we have dropped the superimposed bars. In eqns (2.13) IH is the height of the 
block and u0 the imposed velocity on the top and bottom surfaces. In eqns (2.14)- 
(2,16) all of the differentiations are with respect to nondimensionai variables. We note 
that m eqn (2.16) all. rather than 90-95°7o as stated by TAYLOR and QUINNEY (1934), 
o( the plastic working is assumed to be converted mto heat. 

For the viscoplastic block being deformed in simple compression we study only those 
deformations that remain symmetric about the horizontal and vertical planes passing 
through the center oi the block. Thus we analyze (he deformations o( the material in 
the first quadrant. With the origin oi the coordinate axes situated at the center or the 
undeformed block (cf. Fig. 1), we can write the pertinent boundarv conditions as follows 

*      6      a 

100 • AVC  STRAIN 

a) The prooiem MUüICO,   bi vresv-arain ^jr\e  n Minnie »omore^ion   or   ne 'TUk,riJi -'aoncJ 
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y,  = 0,     T2]  =0,     0] = 0 at A',  = X\ = 0, 

u2 = 0,    T]2 = 0,    0: = 0 at .v: = X2 = 0, 

TlttNa = 0,    QaN^ = 0 on the right face, 

v-, = -U{t),    r,2 = 0,    Qz = 0 on the top surface. 

(2.18) 

That is, boundary conditions resulting from the assumed symmetry of deformations 
are applied to the left and bottom rac.s, the right face of the block is taken to be trac- 
tion free, and a prescribed normal velocity and zero tangential tractions are applied 
on the top face. Note that the initially flat top surface is assumed to stay Hat through- 
out the deformations of the block. All four sides of the block are assumed to be per- 
fectly insulated. 

We consider two different sets o( initial conditions. First we take 

p(X,0) = 1.0,    tf,(X,0)»0,    i/:(X,0)=0,   0(X,O)=O, (2.19) 

and model a material inhomogeneity/flaw by assuming that 

H = (i -€(1 - r:)9exp(-5r:)]([(l + */)*'(v3/)J<I - »6)\ (2.20) 

rz = (Xi - X?)z + (X2 - X!)2. (2.21) 

That is, the material around the point X° is weaker than [he surrounding material. 
In this case we took 

U(t) = r/0.005,   0 < ( < 0.005 (2.22) 

= 1 t > 0.005. 

Another set oi initial conditions studied involved perturbing the steady ^ate solution 
corresponding to 

V\ = 0.37.V,,    vz = -x2 (2.23) 

for an average applied strain-rate o( 5.000 sec"1 by superposing on it a temperature 
perturbaron given by 

JO = t(l - r;)9exp(-5r;). (2.24) 

The velocity field (2.23) and the temperature distribution (2.24) were taken as the ini- 
tial conditions, and U(() was >et equal to 1.0 for / > 0 We note that the value ot 
c in eqns (2.20) and (2.24) models, in ^ome sense, the strength ol the detect. 

We refer the reader to BATRA and Lit [I989J tor details ot seeking an approximate 
solution of the problem numerically 
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III. COMPUTATION AND DISCUSSION OF RESULTS 

In order to compute numerical results we assigned following vaiues to various mate- 
rial and geometric parameters. 

b = 10,000 sec,    v = 0.0222°C-\    a0 = 333 MPa, 

k = 49.22^ m-' °C-!,   c = 4737 kg"1 'C\ 
(3.1) 

p0 = 7,800 kg m"\    B = 128 GPa,   H = 5 mm, 

v„ = 25 m sec"1,    m = 0.025. 

Except tor the value of the thermal softening coefficient v, these values are for a typical 
hard steel. We assigned a rather large value to v to reduce the CPU time required to 
solve the problem. For the values given in (3.1), d„ - S9.6°C, the nondimensional melt- 
ing temperature equals 0.5027, and the average applied strain-rate equals 5,000 sec"1. 
Figure lb depicts the effective stress se, defined as the left-hand side of eqn (2.12), 
versus the average suain. The presumed high value of the thermal softening coeffi- 
cient results in material softening due to the heating of the material overcoming the 
material hardening due to strain-rate effects right from the beginning. 

III. 1, Results with initial temperature perturbation 

Figure 2a depicts the isotherms for the initial temperature distribution (2.24) with 
e = 0.2 centered around the point (0.0, 0.375). In this case the initial velocity tield is 
assumed to be given by (2.23) and U(t) = 1.0 for t > 0. The peak temperature ^tux 

of 0.2 occurs at the center of perturbation. The isotherms look elliptical because ot 
the different scales along the horizontal and vertical axes. Since the boundaries ot the 
block are taken to be perfectly insulated the heat generated due to plastic working raises 
the temperature of every material point. The isotherms at rive different values or the 
average strain are plotted in Figs. 2b ihrough 2e. These suggest that material points 
along lines passing through the center of perturbation and inclined at r45° with rhe 
horizontal axis are heated more than other particles. Mso contours of successively rugner 
temperatures seem to originate from (0.0, 0.375) and propagate in the direction ot max- 
imum shearing stress They get arrested temporarily at the ooundanes ot ;ne block 
and vvnen the matenai at the boundarv vvnere these contours meet it gets heated ap. 
these start propagating into the matenai as if the incident contours .vere reflected back 
into the body, the angle ot reflection being almost equal to the angie ot incidence 
This phenomenon becomes more evident from the plots in Fig. 3 or the contours ot 
the second invariant / ot the deviatonc strain-rate tensor In Figs. 3a througn 31 :ne 
contours of I are plotted at successively higher values ot the average strain *,,.,, In 
each case the peak value I^M ot / occurs at the point (0.0, 0 375) where the tempera- 
ture is maximum. -\t an average strain of 0.04, /^ux = 11 44 implying thereov that ?ne 
material surrounding ;t is deforming at a stram-rate greater than 50,000 ^ec For 
Mm = 0 04, r^TiJ, - 0.341 occurs at <0 0, 0.3"5) and equals ^8 2,ro ot -he presumed 
melting temperature ot ;he material. We note tnat *nen the temperature perturbation 
was introduced at (0.0. 0 0) (BATRA * Lit (1989|). U^ and tfrav at •. „% = 0 04 equalled 
i.~"5 and 0 313, respectiveiv   For :ne problem being „urrenth anuiwed, 'he -ontour^ 
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Fig. 2. Isotherms plotted "in the reference configuration at different values oi the average strain *hen trie maie 
nai detect is modeled bv introducing a temperature perturbation 

(a) -vJVM * 0 Ü, 4.n„ =0 2: 0 10, 0 125. _   _   _   0 i 50 
ib) T,V* = 0 03, ^4X = 0.28: 0.10, 0 15. _   _   _   0 -G. 0 25 
10 VJVH » 0.035. *„,„ a 0.304;  0 10. 0 15. _   _   _   ■) 20 D 25 
(d) ->.,„ a 0.0375. ^4, = 0 3213 0 10. 0 15. _   -   _   0 20 .) 25. >■> 30 
«e» v.v» = 0 04. *njx = 0 341.  ■} 10. 0 15   _,   .   _   0 20   0 25. •) 30 

of / originate at (0.0, 0.3^5) ana [hen fan out along the direction o\ maximum shear- 
ing. There appear to be sources oi energy ouilding up at lO.O. 0 3~i) and three other 
points on ehe boundary where the parallelogram through (0.0, O.j"7!» >vnh adjacent 
sides making angles of r45° with ehe horizontal axis intersect it. When -here is suffi- 
cient energy buiit up at these points contours oi successively higher values ot / origi- 
nate from these points and propagate along the direction ot maximum sneanng stress. 
Also as tne deformation oi the block progresses, these contours oecome narrower m- 
piying thereby that severe deformations are localizing into thm aands. 

Figures 4a througn 4c depict the velocity field m the X, and V: iirecion <or 
~u*i - 0.0. 0.035 and 0.040. The velocity field at *u%i = 0 0 is a grapmcai representa- 
tion ot eqns (2.23) and corresponds to a homogeneous deformation or the stock Om. e 
the deformation localizes tne veiocitv tield *uhin tne material adjoining ;ne sides of 
the parallelogram stated above vanes sharply, and it vanes almost lineariv within the 
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Fig. 3   Contours or the second invariant / ot the deviatonc strain-rate tensor at different values or the average 
strain when the material defect is modeled bv a temperature perturbation. 
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te> 7uv, = 0 0375. /m„ = 10.51: _ 2.50. 
,n ^ = 0.040. /mjx = II 44:   2.50, 
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remainder of the material. This contrast between the velocity field in separate regions 
becomes sharper (e.g. see Fig. 4c) as the deformation becomes more localized. 

The variation of the effective stress ?„, defined as being equal to the lett-hano 
side of eqn (2.12), within the block at ym = 0.0, 0.035, 0.0375 anc1 0.040 is plotted 
in Figs. 5a through 5d. Initially the effective stress is lower within the material sur- 
rounding the center of temperature perturbation because it is compu'H from the pre- 
scribed velocity and temperature fields. Since se satisfies eqn (2.12), tne initially higher 
temperature around (0.0, 0.375) reduces the How stress needed there to deform the 
material plastically. Even though the values of both the temperature and / are higher 
within the band as compared to those in the surrounding material, the effect of ther- 
mal softening exceeds the material hardening due to strain-rate effects, and the effec- 
tive stress within the band is lower than that in the rest of the matt-rial. The plots 01 
se and the velocity field suggest that the band first forms along tne shorter side ot the 
parallelogram that passes through the center ot the temperature bump. Also tne mag- 
nitude of the deformation within the band along the four sides of the paralIeiogram 
is not the same. 
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(a) 

(b) 

Fig. 4   Velocity rlctd within the block at different vaiues ot the avenge strain with the material aetect m vtcled 
bv a temperature perturabation. <a) 7«» - 0-0, (bl y^ = 0 035. (O *<JV|, = 0 040 
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III.2 Results with material inhomogeneity modeled by a weak material 

We now assume that the initial velocity field is given by (2.23), d(X,0) - 0, and 
the material parameter p is represented by eqn (2.20) with e = 0.1. That is, the material 
surrounding the point (0.0, 0.375) is weaker than the rest of the material. In Fig. 6 
we have plotted the contours of / and 6 at different values of 7avg. A comparison of 
these results with those in Figs. 2 and 3 reveals that the pattern of the shear band de- 
velopment is identical to that when the material defect was modeled by a temperature 
perturbation. In this case it takes a little longer for the shear band to form and the 
maximum value 10.76 computed for / is comparable to that (11.44) obtained for the 
temperature perturbation. However, the maximum temperature rise of 0.141 computed 
with the temperature perturbation is lower than the maximum temperature change of 
0.2435 obtained in this case. This is to be expected since with the material defect modeled 
by a weak material a band forms at a higher value ot the average strain. 
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Fig o Contours ot the second invariant / ot the aeviatonc N(ram-raie tensor and me [emoeratL.re „runae " 
at different values ot the average «.tram -vnen the material deteu is moueled bv owerina the 'low -tress ^i 
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to) :M =0 035. /„,, = ; 297     i 5. 
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<n -^ = 0 0545   ■*„,, =0 2435     ) 10. 

2 0   _   _   _    2 5 
: 0, ^   _   _    "5 '0 0 
) 0"    _    _    _     i 08 

) !25    _   _   _     ) 150 
) ' 5   _   -.   _    i 20 
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The plots of the velocity field and the effective stress look similar to those shown 
in Figs. 4 and 5, and are therefore omitted. 

The determination of the equivalent amplitudes of the temperature perturbation and 
the weakness in the material parameter p in the sense that the two will result in the 
formation of the shear band at the same value of the average strain is laborious and 
has not been attempted here. 

111.3 Effect of the reduction in the strength of the weak material 

For the one-dimensional problem BATRA [1988] found that the temperature pertur- 
bation with the higher amplitude hastened the initiation of the shear band. Here we 
examine the effect of introducing near the center of the block a weak material with 
flow stress reduced by either 5^0 or I0°V In each case the initial velocity field given 
by eqn (2.23) was assumed. Figures 7 and 8 show, respectively, the contours ot / and 
0 for the two cases at various values of the average strain. As expected, the existence 
of a stronger defect enhances the inflation and development ot the shear band. In each 
case the band forms essentially along the main diagonal, the slight offset is possibly 
due to the singular nature of the deformations near the top right corner. When the 
reduction in the flow stress of the material near the center is small the singularity in 
the deformations near the top right corner may cause a shear band to initiate trom 
this point. With the 5^0 reduction in the How stress, /max at yavg = 0.06 equals 5.32; 
and it equals 17.79 for the same value of vavg but with a 10% reduction in the flow 
stress. The higher value of / increases the temperature of the material within the band 
faster which, in turn, reduces the effective stress required to deform the material plasti- 
cally. The cumulative effect builds upon itself and enhances the growth of the shear 
band. Whereas a shear band has practically formed at ywt = 0.06 for the \0% reduc- 
tion in the How stress, it forms at 7avg = 0.0825 when the How stress for the material 
near the center is reduced by S^o. The maximum temperature computed in the two 
cases equals 0.343 and 0.398, respectively. We note that, except for the delav in the 
formation of the shear band with the 5aro reduction in strength, the results for / and 
6, as well as those for the velocity field and the effective stress field, are similar :n 
the two cases. 

A comparison of these results with those reported by BATRA and Lit [1989) who 
introduced the temperature perturbation (2.24) with e = 0.2 at the center ot the speci- 
men reveals that the results agree qualitatively with each other. With the temperature 
perturbation the maximum vaiues of I and the temperature rise JO at *.aVli = 0 059 vvere 
computed to be 20." and 0.249. r-espectivety At %JVJ = 0.06 and with a iO^o reduc- 
tion in the How stress at the center ot the block, /mtW ana JV.ndX equal I" "9 and 0 308. 
respectively. And these equal 5 324 and 0.167, respectively, \nh i 5iyjo -eduction n 
the How stress. 

111.4 Results with zero initial conditions 

The results presented above *vere obtained by perturbing a iteadv -»täte solution ^Ve 
now examine the effect ot inmai conditions, .f anv, on tne initiation and growtn or 
a shear band. Figure 9 depicts :ne contours <?t [He second invariant / ot tne aeviator.c 
strain-rate tensor and tne temperature rise wnen zero initial conditions ti.e , ihose zi\<zn 
by eqn (2.19)), and trie boundary velocity field Lit) defined bv (2.22) ^ere applied 
Also, «n this case the thermal conductivity A3s set equal to zero  The material detect 
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Fig ' Contours ot the second invariant / ot the deviatonc strain-rate tensor at different values or the average 
strain vhen the material detect is modeled bv --educing the 'low stress ot 'he material near the writer n 'he 
block ov -uher iO0^ <Figs  "a-'o or f^n (Figs  "d-"D 
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was modeled by eqn (2.20) with e = O.i and \° = {0.0, 0.375), vi2. the flow stress 
oi the material surrounding the point (0.0, 0.375), was presumed to be lower than that 
of the remaining material. A comparison of these results with those bhown in Fig. 6 
shows that the precise values oi initial conditions do not affect the qualitative nature 
or' results. However, quantitatively the results are affected by the choice ot initial data. 
As expected, the values oi fmiK computed for the same value oi «,aw is higher when 
the steady state solution is taken as the initial data as comparea to that computed Aith 
zero initial conditions. One reason tor this difference is that, in both cases, \avw is 
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is modeled bv reducing the flow stress of" the material m;ar :he ^nter ot the olock ;>v either fO^o (Figs ^a-1U 
or 5W« (Figs. Sd-an 

(a» yMt x 0 045. i^K - 0 U9: 0 10.        0 i 125   _   _   _   «) 1250 
<b> *,JV- = 0 05. 4mj< = «) 192,   ) 10. ') 125   _   _   _   0 150 
(C) \ut =0063. inj< =0 343.   0 15, .;20.  _   _   _    <) :* I 30 
id) \„t = 0.045, inw = 0.099: 0 08 
■ et :„d =0 065. *,,„, =0 2113.   0 125 0 150..   ,   _   •> i~* 
it )-.^ =0 0825, in„ =0 3984. 0 15.        0 20. _   _   _   0 25 u *0 

taken to be zero at time .' = 0. The difference is reduced somewhat oecause oi neglect- 
ing the heat transfer due to conduction. Setting fc = 0 snould result :n a siightiv higner 
temperature locally than would be ootamed if k were positive. The mgher temperature 
softens the material more whicn. in turn, results .n mgner values oi l. What et feet 
the thermal conductivity has on the computed results has not >et been ascertained. For 
the one-dimensional simple sneanng problem, BATRA [1987bj used a constitutive rela- 
tion similar to eqn (2.4) and found that the thermal conductivttv had verv little effect 
on the initiation of the ^near band. However, MERZER (1983) used BODNER and P\R- 
roM's [1975] constitutive relation and found that the thermal conductivity Mgmticantlv 
affects the width at \he >near band. 
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Fig 9 Contours ot the second invariant / or" ehe deviatoric ^rain-rate tensor and the temperature ^nange * 
at different values or the average strain when the material defect is modeled ov educing the How .tress ot 
'he material bv !0OTo. taking <:ero initial conditions and netting ihe thermal „onauui.itv K = 0 

ia> •,„ =0 035. /no, = 2 39:  125. ! 50. _   _   _    I ~5 
ib) -,1V- =0055. /,„.„ = 9 68.  :.50. 3*5.«.   .   _   500 
icl ',>„ =0 065. /na, = i: 47.  5 0, "5   _   . 10 0 
id) *.WII - 0.04, r*Ma, a 0 t 0 0?5 0 085. _   _   _    0 095 
io-;w=oo55 *wai):n   ) io.      015 _. _ _ o :o 
it)- ,VB =0 065. i,w =0 310  0 15 0 20,       _   _   0 25 

111.5   Vfaienai damage as a softening mechanism 

The results presented thus f'ai nave considered the material softening caused DV the 
rise in its temperature. Another possible softening mechanism is the nucleation. coales- 
cence and growth o\ voids and/or cracks in the body. One way to model this is to 
introduce an internal parameter o whose rate of' evolution o is a functicr. ot the his- 
tory ot" deformation and/or plastic working, if we assume that o is a function ot the 
plastic working and the material softening caused by o can be adequately represented 
by lowering the How stress by (1 - i/o) where 0 is a material parameter, then *e ma> 
write 

-**- 
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d> = A(i - v0)D,jD,j{\ + bl)m/(prv31), (4.2) 

atJ = -d(p - 1)6V + (l/vl/)(l + bl)m{\ - uo)Dl;, (4.3) 

where A is a constant. In this case the results of section 4.4 may be thought of as repre- 
senting the dynamic development of an adiabatic shear band in plane strain compres- 
sion of a viscoplastic block when the material softening mechanism is the internal 
damage caused by plastic working. 

!V   CONCLUSIONS 

The development of a shear band in plane strain compression of a block made of 
a thermally softening viscoplastic material being deformed at an overall strain-rate 
of 5,000 sec"1 has been studied. The results computed when the material derect is 
modeled by perturbing the steady-state solution for a homogeneous body (a) with a 
superimposed temperature bump, and (b) with the introduction of a weaker material 
agree with each other qualitatively. The qualitative nature of the results remains un- 
changed even when zero initial conditions are assumed and the transient problem solved. 

When the material defect is on the vertical axis of symmetry and away from the cen- 
ter of the block, a shear band initiates from the site of the defect, it propagates along 
the direction of maximum shearing and is reflected back from the boundaries, the an- 
gle of reflection being nearly equal to the angle of incidence. The shear stress within 
the band is considerably lower than that in the surrounding material. The eventual de- 
velopment of the band along the sides of the parallelogram divides the block into five 
regions. The velocity field within each region varies linearly ana sharp gradients in the 
velocity field occur at the sides of the parallelogram. 

We add that the conclusions drawn above are strictly valid for the constitutive model 
used herein. However, similar results were obtained by NEEDLEMAN [1989], LEMONDS 

and NEEDLEMAN {!986a, 1986b} and ANAND et at. [1988] who used different constitu- 
tive relations and the latter two papers ignored the effect of inertia forces. Possiblv 
sharper results could be obtained by using a finer mesh and/ or a different space ot 
trial solutions and test functions. 
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Abstract—Plane strain thermomechanical deformations of a thermally softening viscoplasuc body 
containing a rigid non-heat-conducting circular inclusion at the center are studied. The body is deformed 
in compression at a nominal strain rate of 5000 sec"1 The flow rtress of the material of the body is 
assumed to decrease linearly with the rise in its temperature. Two different values of the thermal softening 
coefficient are considered. The rigid inclusion simulates the presence of second phase particles such as 
oxides or carbides in a steel and serves as a nucleus for the initiation of a shear band. 

It is found that the matrix material adjoining the rigid inclusion undergoes severe deformations The 
strains in the matrix material near the inclusion surface and adjoining the horizontal axis are larger than 
that in the matrix material close to the vertical axis Eventually, oni\ bands along the main diagonals of 
the cross-section emerge. The speed of propagation of the contours of constant maximum principal 
logarithmic strain is found to \ar\ from II to 420m/sec. 

I. INTRODUCTION 

Johnson [1] has recently pointed out that the study of 
shear bands dates back to 1878 when Henry 
Tresca (2] observed hot lines, now called shear bands, 
in the form of a cross during the hot forging of a 
platinum bar. Massey [3] observed these hot line* in 
1921 during the hot forging of a metal and noted that 
'when diagonal slipping' takes place there is 
great fnction between the particles and a con- 
siderable amount of "heat is generated." Zener and 
Hoilomon (4) stated that shear bands initiate when 
thermal softening overcomes the hardening due to 
strain and strain rate effects. They reported 32-/im- 
wiae snear bands during the punching of a hoie in a 
steel piate. A similar experiment was performed by 
Moss (5) wno computed strain rates within the band 
to be of the order of 10ssec"' The experimental 
observations of Costin et ai. [6], Hartley et ai. [7], 
Giovanoia (8) and Marchand and Duffy [9] involving 
torsionai deformations of thtn-wall steel tubes have 
contributed significantly to our understanding of the 
initiation and growth of shear bands in steeis de- 
formed at strain rates of 500sec" to 3000sec" 

Most of cne analytical (10-18] and numeri- 
cal (19-28] studies have analysed overall simple 
shearing deformations of a viscoplastic block. Differ- 
ent constitutive relations have been used to model 
the thermomechanical response of the material. A 
material defect has been modeled by introducing (i) 
a temperature perturoation, (ii) a geometric defect 
such as a notch or a smooth variation in the thickness 
of the specimen, (m) a perturbation in the strain rate. 
or (iv) assuming that ehe matenai at the site of the 
defect is weaKer than the surrounding matenai. The 
rocus of these studies has been to delineate factors 

that enhance or inhibit the initiation and growth of 
shear bands. Nearly all of the two-dimensional stud- 
ies (29-36] have assumed that a plane strain state of 
deformation prevails in the body. These works have 
employed different constitutive relations and also 
accounted for varying softening mechanisms. 

Here we solve numerically the coupled nonlinear 
equations, expressing the balance of mass, linear 
momentum and internal energy, subjected to a suit- 
able set of initial and boundary conditions. It is 
assumed that a plane strain state of deformation 
prevails and the body softens because of its being 
heated up due to the plastic working. A matenai 
defect or mhomogeneity is modeled by introducing a 
perfectly insulated ngid non-heat-conducting circular 
inclusion at the center of the body The inclusion can 
be viewed as precipitates or second phase particles in 
an alloy. These panicles, such as oxides or carbides, 
are usually ^ery strong relative to the surrounding 
matenai. and their deformations can be neglected 
Here we take them to be non-heat conducting 
too. Results are computed for two different values of 
the thermal softening coefficient and emrauSis is 
placed on finding the speed of propagation of a shear 
band. 

1 FORMULATION OF THE PROBLEM 

We use rectangular Cartesian coordinates to study 
plane strain deformations of a pnsmatic body with a 
square cross-section and containing a circular rigid 
non-heat-conducting inclusion at the center. A cross- 
section of the body is depicted in Fig 1. We presume 
that us deformations are symmetneal about the 
honzontal and vertical axes passing through the 
centroid and analyze deformations of the matenai in 
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the first quadrant. Equations governing the defor- 
mations of the body are 

p+pv„ = Q (1) 

P*v, = <7,A, (2) 

pÖ=ß6H + Q (3) 

crt/--*(p-l>*v + 2fd>„ (4) 

2/i»(l/v3/)(l+WrO-vö) (5) 

D^K + OjJß 

ß^D,,-^,, (6) 

Ö - 2^Ay (8) 

These equations are written in terras of non-dimcn- 
sional variables which are related to their dimensional 
counterparts, denoted below by a superimposed bar, 
as follows: 

8**BtT0 

5 ~ bfffvo 

P^PPo 

ß =h(p^R) 

x = xfl. (9) 

Equations (I). (2) and (3) express, respectively the 
balance of mass, oalance of linear momentum and the 
balance of internal energy. Equation (4) with ß given 
by eqn (5) is the constitutive relation for the material 
of the body. When written as 

(l/2j.,i„}':=U ~bl)m(\ -vd)/v 3 110) 

$„ = ot- B(p - l)<5,,-<2tf/3)0M<\ (II) 

it can be viewed as expressing the generalized von 
Mises yieid criterion with the flow stress at a material 
particle increasing with its strain rate but decreasing 
with the rise in the temperature of the material 
particle Aiso. u has been assumed that the material 
ooeys Founers iaw of heat conduction with constant 
thermal conductivitv K In eqns 11) through 111), p is 

Fig. 1   Cross-section of the prismatic body studied 

the present mass density and /?0 the mass density in 
the undeformed and unstressed reference configur- 
ation, r is the velocity of the material particle in the 
direction <r,, tf is the temperature nse at a material 
particle. tf0 the reference temperature, c the specific 
heat, ß the non-dimensional thermal diflusivity. and 
<r0 is the yield stress for the material of the body in 
a quasi-static simple compression test. Furthermore. 
<t is the Cauchy stress tensor, s is the deviatonc stress 
tensor, parameters b and m cnaractenze the strain 
rate hardening of the material and v delineates.its 
thermal softening. The quantity Q given by eqn t8) 
equals the heat produced per unit volume due to 
plastic working, D is the strain rate tensor and Ö 
denotes its deviatonc part. Here we have assumed 
that all of the plastic working rather than 9(M5% oi 
it, as asserted by Farren and Taylor (37], is converted 
into heat. The non-dimensional numbers i ana 5 in 
eqns (2) and (3) give, respectively, the magnitude o( 
inertia forces relative to the flow stress of the material 
and the length over which heat conduction ejects are 
important. A superimposed dot stands toi the ma- 
terial time derivative and :•   - rv Cx 

With me non-deformable and non-heat-conducting 
inclusion, the boundary conditions for the material «n 
the first quadrant are 

i, =ij     7:1 = i). </, = o   on C. s \', ao 111) 

-, = o,    7i: = 0, !/:-0   ont;=r.=0 122) 

<t n « u    q,n — 0 on tne ngnt iurtace (12 3) 

i: ■ -On, 

rr; = M       ./, ~ 0 on the top surface !24) 

i   sstl       '. = 0,    J n = i")   at T.e 'nterface r 

between 'he 
mclusion and T.e 
matrix ■ 12 : i 

That > ail o\ tne lounamg surfaces o! the "MOCX 

ire taken '0 be perfectly  .nsulated   The bounaarv 
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conditions (12.1) and (112) follow from the assumed 
symmetry of the deformations. The boundary con- 
dition (12.3) states that the right surface of the block 
is traction-free. Here n is an outward unit normal to 
the surface. The function U{D in condition (12.4) 
gives the variation of the prescribed normal velocity 
with time on the top surface. The contact between the 
loading device and the top surface is taken to be 
smooth. The boundary condition (12.5) states that 
the inclusion is ngid and non-heat-conducting and 
there is no sliding of the matrix material on the 
common interface f0 between the matrix and 
the inclusion. The interface /"0 has the parametric 
representation 

X7 ■*- X\ —   Rn 

or 

U(t) = (14) 

x>+x\ = Ri (13) 

where RQ IS the radius of the circular inclusion. The 
loading function U{t) is taken to be 

f//0.005   (U/«S 0.005 

(1 t £ 0.005. 

For the initial conditions we take 

p(.v. 0) = 1.0 

u,(*.0) = 0 

vz(x, 0) = 0 

0(.t.O)«O. <"L 
The governing equauons (1) through (8) are 

coupled and highly nonlinear. It is difficult to prove 
the existence and uniqueness of a solution of these 
equations. Herein we seek an approximate solution 
of these equations by the finite element method. 
The Galerkin approximation (38] of the governing 
equaüons and the boundary conditions gives a set of 
coupled nonlinear ordinary differential equations 
which are integrated with respect to time t by using 
the backward difference Adams method included in 
the subroutine LSODE(39]. The subroutine adjusts 
the time step adaptively until it .can compute a 
solution of the ordinary differential equations within 
the prescribed tolerance We use four-noded isopara- 
metric quadrilateral elements to discretize the domain 
and the lumped mass matrix. 

3. COMPUTATION AND OISCUSSION OF RESULTS 

In order to compute numerical results, we took the 
following values of various material and geometric 
parameters. The values of material parameters are 
representative of a typical hard steel. 

5= 10,000 sec 

a, = 333 MPa 

£ = 49 22Wm-  X 

m = 0.025 

<7 = 473J'kg  C 

;>,= 7800kg/nr 

B= 128 GPa 

B = 5 mm 

t A - 25 m/scc 

Ä, = 0.05 mm 

v = 0.00185C-' or 0.01 C- (16) 

For these \alues of material parameters. tf0 = 
89.6'C. a =0015 and ß « 1.66 x 10'4 The pre- 
sumed values of the thermal softening coefficient are 
taken to be large so as to reduce the computational 
resources required to solve the problem. A compari- 
son of the results for two values of v should enable 
us to delineate the effect, if any. o( the value o( the 
thermal softening coefficient upon the development 
of a shear band. The finite element mesh used to 
compute results is shown in Fig. 2. The mesh is very 
fine in the region surrounding the inclusion and 
gradually becomes coarse as we move away from it. 
No attempt was made to align the element sides so 
that they are parallel to the direction of maximum 
shearing at the time of the initiation of a shear band. 
We note that Needleman [31] has suggested that such 
a mesh will resolve better the sharp gradients of the 
deformation within and near the band. 

3.1. Results for v =0 00185/'C 

Since the effective stress at matrix points abutting 
the ngid inclusion is non-uniform and is expected to 
be higher than that at matrix points far away from 
the inclusion, it is not immediately clear where the 
band will initiate rirst Accordingly we have plotted 
in Figs 3a through 3c the evolution of the maximum 
principal logarithmic strain &. the temperature nse 
and the effective stress at points A(0.0159, 0 00124), 
B(0.0209. 0 00124), 00 0259,0 00124), E(0 0110. 
0.0110). F(0 0142. 0.0142) and G(0 501, 0 00202) 
The logarithmic strain c is defined as 

= In A, := -in /,, (17) 

where •: and t\ are the eigenvalues o( the nght lor 
left) Cauchy-Oreen tensor The second relation in 
eqn (17) follows from the observation that the defor- 
mations are nearly isochonc. Note that the point G 
is far away from the inclusion, and points A, B, C are 
on the same horizontal line with A being closest to the 
inciusion surface Points E and F are on the line that 
makes an angle o( 45' with the horizontal. The 
evolution of the maximum principal logarithmic 
strain e, the temperature nse and the effective 
stress at points P(0.00i24. 0 0170), Q(0 00124, 0 021), 
RC0.00124, 0 0260), TfO 00624. 0.0210), U(0 00478. 
0.0245) and V(0 00142, 0 501) are depicted in Figs 4a 
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Fig. 2. Ft'fli» element discretization of the domain. 
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Fig. 3b. Evolution of the temperature rise at points A. B, C, E, F and G <v » OOOI85/°C) 
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Fig. 3c. Evoiuuon of the effective stress at points A. B. C. E. F and G (v =0 00185**0 

through 4c. Note that points P, Q and R are on the The plots of the maximum pnncipal logarithmic 
same vertical line, with P being nearest to the in- strain at these points reveal that the deformation m 
elusion surface. The point V is near the vertical axis the matrix is rather mmiscule out that at points close 
but far removed from the inclusion ana the top to the inclusion surface it is quite lasge The rates of 
loading surface. evolution of e at points G and  v\ whicn are far 
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removed from the inclusion and are near the horizon- of £ at points A and B are essentially the same and 
tal and vertical axis, respectively, are nearly the same, these are slightly more than that at point C, one is 
At each instant, the value of e at point A is much tempted to conclude that the band initiates at point 
higher than that at point P, suggesting thereby that A and propagates from A to C. The rather significant 
the material surrounding point A is deforming more values of z at points E and F which are higher than 
severely than that adjoining point P. Since the values the values of e at points P and Q suggest that the band 
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Fig.   4a. Evolution   of  the  maximum   principal   logarithmic   strain   at   points   PfO 00124 0 01*0). 
0(0.00124.0.0210).   R(0 00124.0.0260);  T(0.00624,0.0210).   11(0.00478.0 0245)  and   V(000I42.0 :0I 

(v=0.00185rO. 
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Fig. 4c   Evoluuon of the erTecuve stress at points P. Q, R. 7. U and V u- - O0O185/C) 

imuaung from point A also propagates towards 
points E and F. The contours of i plotted in Fig. 5 
suggest that the localization of deformation initiating 
at points P, Q, and R propaptes towards points E 
and F. The band originating from the region enclos- 
ing points A and 3 merges with the band initiating 
from the region surrounding points P, Q, and R and 
eventually the two propagate as a single band along 
the diagonal of the block. We rote that for the rigid 
non-heat-conducting ellipsoidal inclusion {35], a band 
inmated from tts vertex on the major axis and 
propagated into the matnx in the direction of the 
maximum shearing. A possible explanation for the 
value of £ at point R being higher than that at points 
E, F, P, and Q is that the band originating from the 
region surrounding points A and B and propagating 
towards E and F influences'the deformations of the 
region around point R. A!<;o, different components of 
tne stress and strain tensors exhibit singularities of 
different oraers {40} m regions surrounding points A 
and P Thus plastic working which equals :n<jD) 
netd not be maximum at the point wnere *he peak 
value oi s occurs. The computed values of the tem- 
perature rise at point R indicate that iriaD) is lower 
at R as compared to its value A other neighboring 
points considered. The computed values of the erTec- 
uve stress plotted in Figs 3c and 4c support the view 
that, as the tempe- ature at a material point rises, it 
becomes softu and requires less effective stress for it 
to deform plastically. The effective stress at points far 
away from the inclusion surface essentially itays 
cotiötant whereas that at points near the inclusion 
surface drops to very low values. 

After having determined that a shear band propa- 
gates along the main diagonal, we find its speed of 
propagation as follows. We fix two points in its path 
and determine the values of the time when a contour 
of the maximum principal logarithmic strain i arrives 
at these two points. The computed speed of propa- 
gation is found to depend upon the pair of points 
used and the value of e. The results are summarized 
in Table i 

Note that the values of the temperature nse and the 
logarithmic strain at these observation points are not 
the same, implying thereby that the speea o( propa- 
gation o( an £-contour at a point depends upon the 
state of deformation at that point. Batra and 
Zhang [36], wno used the constitutive relation i4) to 
study the development of shear bands at void tips in 
a viscoplastic cylinder loaded internally by an impact 
load, found that contours of i = 0 2524 and 0 43" 
propagated at speeds oi 115.2 and 14 m,sec. respect- 
ively. Needleman (31) who studiea plane strain defor- 
mations oi a viscoplastic block deformed in simple 
compression and used a quite different constitutive 
relation, found that contours oi constant values oi „ 
propagated at speeds ranging from 590 to 2500 msec 

3.2. Results for v «0.01.SC 

Figures 6a, 6b and 6c depict, respectiveiv, the 
evolution oi the maximum principal logarithmic 
strain £, the temperature nse. and the effective stress 
at points A. B. C, D. E and F (0.0177.0 0177) A 
comparison of these wrh the results plotted in Figs 3a 
through 3c reveais that *t is now easy to decipner 
when a shear band inmates. M a nominal strain ol 

6a 



approximately 0.0105, the values of e at points A and 
B begin to increase sharply. A similar behavior occurs 
at other points considered, except point G, which is 
far removed from the inclusion surface. The tempera- 
ture rise and the effective stress exhibit trends similar 
to those observed for v =0.00185fC. As expected, 

the localization of the deformation occurs sooner for 
the larger value of v. The evolution of s, the tempera- 
ture rise and the effective stress at points P. Q, R, T. 
U and V shown in Figs 7a, 7b and 7c, respectively, 
also indicate that it is easier to delineate the initiation 
of a shear band from the e versus average strain 
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ueiormations oi a inermauy soiicning viscopiasuc ooay 

Table 1. 

£ Co-ordinates o( points used 
Computed speed 

(m/scc) 

0 025 (0.0623. 0.0625). (0.0994, 0 0997) 
(0.350.0.349). (0.470,0 471) 
(0 470.0 226). (0.679,0 699) 

34 97 
170 78 
160 84 

0 050 (0 227.0 226), (0.336.0 335) 
(0 454,0 453). (0 660.0 658) 
(0 649.0 628), (0 660.0 658) 

51 63 
%64 
52 57 

0 10 (0 339.0 338). (0 460.0 459) 
(0.460.0 459). (0.544,0.543) 

42 69 
59 57 

0.150 (0.235.0 234). (0 353.0.352) 
(0 353.0.352), (0 460.0 459) 

19 62 
43.12 

0.20 (0 099,0.0994), (0.227,0.226) 
(0.227,0.226). (0 303.0.302) 

1197 
1261 

0.25 (0 0647, 0.0649). (0.0997,0.0994) 
(0.0997, 0 0994), (0.150,0 151) 

10 93 
42 29 

curve. For the larger value of v, the values of i at 
points P, Q and T are higher than those at points R 
and U. However, e assumed larger values at points R 
and S as compared to those at points P. Q and T for 
the smaller value of v The curves of the temperature 
nsc and the effective stress are similar for the two 
cases. 

As for v =0.00185/ C, only a single band eventu- 
ally developed along the mam diagonal. The speeds 
of propagation of contours of constant e. found by 
the method stated above, are listed in Table 2. We 
note that these are average speeds for a contour of 
constant z to propagate from one point to another 

point. For points that are very near to each other, the 
average speed will be close to the instantaneous speed 
of propagation of the contour of constant c 

In each case studied above, the computations were 
stopped when a material point melted. In Fig. 8. the 
average load versus average strain curve is plotted for 
the two values of v In each case, the solid curve 
corresponds to the case when there is a rigid inclusion 
present in the block. The average compressive force 
Fv is defined as 

/=>-     *«(*,, 1.0)<U,. (18) 

0.12f 
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0.04 i 

0.00^ 
0.000 0 004 0.008 0.012 0.016 
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Fig 6a   Evolution of the maximum principal logarithmic strain at points A  B, C. E, F(0 0177,0 0! 77) 
and G <v =0 01   C) 

66 



468 Z. G. ZHU and R. C. BATRA 

1.21 

0.8- 

2 

0.4- 

0.0H 

0.000 

G 
0 004 0.008 0.012 0.016 

«BUCE STRAW 
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Fig  6c   Evolution of the effective stress at points A   8 C   E   F and G u = -J ** 1   C 

The integral in eqn '18) is evaluated numerical!) 
by using values of v:: at quadrature points on ihe 
top loading surface The initial almost linear increase 
o( the load is aue to the linear increase ot the 
apphed velocitv held Due to the heating ot me olock 
caused  by  ,ts  piastic  deformations,   me  material 

iOttens ana the loao required o Jetorm t decreases 
The decrease in '.he oad s more :or ne ->locK 
containing i rigid inuusiun *Kxause A ne -luüealiun 
o\ a bhear oanü n t Once i banu nab nucleated 
'he ,oad requirea 'o detorm t >tav> o*er nan 
'.hat !or the nomoeeneoui nio«»\ jitmituna rne ov»er 
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load carrying capacity  of the  member  once a is less accurate than that in the interior of the 
shear band develops in it. The oscillations in the block. Note that contours of different values of 
applied load are possibly due to the inhomogeneous e arrive at elements in the top row at different 
deformation  of  the  top   rows  of elements   and times and affect the stress distribution  in  these 
the computation of tractions at the boundary points elements. 
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Fig. 7a. Evoluüon of the maximum principal logtntlimic strain at points P. Q, R, T. U and V 
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Fig. 7c. Evolution of the effective stress at points P, Q, R. T. U and V iv = 0 01/C) 

Table 2. 

Co-ordiMtes of points used 
Computed speed 

(m/sec) 

0.020         (0.0609,0.0611), (0.0965,0.0962) 33 35 
(0.301.0.322), (0.508,0.506) 425.86 
(0.609.0.611), (0.564. 0 603) 109 58 

0.025         (0 0550.0.0548), (0.0953.0.0950) 38 0 
(0 225.0.24l).(0 230 0 30) 109 24 

(4)    *^ ib) 
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Fig 8   Compressive force versus average Mrain luiv =000(85   C   0) v =001   C 
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4. CONCLUSIONS 

We have studied the problem of the initiation and 
growth of a shear band in ä viscoplastic block 
containing a ngid circular inclusion and being de- 
formed in plane strain compression at a nominal 
strain of 5000 sec"' Results have been computed for 
two values of the thermal softening coefficient In 
each case the matrix material adjoining the surface of 
the ngid non-heat-conducting inclusion undergoes 
severe deformations; that near the horizontal axis 
deforms more intensely as compared to the one along 
the vertical axis of the block. Eventually a shear band 
develops along the diagonals of the block. A narrow 
zone of material surrounding the inclusion continues 
to deform severely The speed of propagation of the 
contours of the constant maximum principal logar- 
ithmic strain £ is found to vary from 11 to 420 m/sec. 
The speed depends upon e as well as the points in the 
path of the shear band used to compute the speed. At 
the time of the initiation of the shear band, the rate 
of increase of £ at a point is greater for the hjgher 
value of the thermal softening coefficient than that for 
the iower value of the coefficient of thermal softening. 
Also, contours of constant z propagate faster when 
the value of the coefficient of thermal softening is 
increased. 
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Abstract 

Adiabatic shear bands are narrow regions in which the shear strain 
is several orders of magnitude higher than that in the adjoining 
regions.  Because of the steep gradients of deformation within and 
near these bands, a properly graded mesh is required for a satisfact- 
ory resolution of the details of the deformation field.  Here we use 
the scaled residuals in the equations expressing the balance of linear 
momentum and the balance of internal energy to refine the mesh adap- 
cively. The computed results show chat the two balance laws generally 
require refinement of the mesh in different regions. 

J-  Introduction. 

Adiabatic shear banding refers to the localization phenomenon that 
occurs during many high-race plastic deformation processes such as 
machining, shock impact loading, ballistic penetration, and metal 
forming. As shear bands are believed to be precursors to material 
fracture, a knowledge of factors that inhibit or enhance their initia- 
tion and growth, is essential to the production of durable materials 
and the design of optimum processing environment and conditions. 

The interest in adiabatic shear banding seems to nave started with 
cne work of Zener and Hollomon(l) who observed 32 ytn wide shear bands 
in a steel plate punched by a standara aie and escimateo the maximum 
scram m the band to be 100.  Analytical studies aimed at finding 
critical conditions necessary for the initiation ana growth of adiab- 
atic shear bands include the work of Clifton(2], Bai[3], Staker(4], 
3ums(5], Anand et al.[6], and Wright[7]   Experimental, investigations 
have Deen carried out, among others, by Costin et al [8], Moss(9], 
Lmdholm and Jonnson(10], and Marcnand and Duffy(11]  Of these, Mar- 
chand and Duffy(11) have provided a detailed history of the tempera- 
ture and strain field during the initiation and development of a shear 
band.  Numerical computations of Clifton et al.(12], Wright and 

Latra(131, Wright and Walter(14], 3acra(15], and 3atra and Kim(16] 
have revealed some interesting aspects of adiabatic shear banding. 
Whereas these investigations involved analyzing simple shearing defor- 
mations of a viscoplastic block, recently, Keedleman(17], and Batra 
and Liu(18] studied the initiation of shear bands in plane-strain 
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deformations of viscoplastic solids.  All of ehe numerical studies 
referred to above have used a fixed finite element or finite differ- 
ence mesh.  In general, the computed results depend upon the mesh 
used. Needleman(19] has discussed this aspect in considerable detail. 
A robust code should have a properly graded mesh and should be able to 
compute results with the least usage of the CPU time. 

Drew and Flaherty[20] have used the moving grid method to develop 
an adaptive finite element code that automatically locates regions 
with large gradients and concentrates finite elements there in order 
to minimize approximately the discretization error per time step. 
Pervaiz and Baron(21] have discussed an adaptive technique which ref- 
ines the spatial and/or temporal grid whenever preselected gradients 
exceed the threshold levels and have applied it to study quasi-one- 
dimensional unsteady flow problems involving finite rate chemistry. 
Herein we use the local refinement method to develop an adaptive mesh 
refinement technique that makes the scaled residuals uniformly dis- 
tributed within the domain.  The technique is applied to study the 
simple shearing deformations of a viscoplastic block whose material 
exhibits strain and strain-rate hardening and thermal softening. 
Results computed with a fixed mesh and an adaptively refined mesh dif- 
fer quantitatively only after the deformations have started to local- 
ize. Also it is found that the residuals in the balance of the linear 
momentum and the balance of internal, energy are generally not high in 
the sane region. Thus different regions need to be refined to lower 
the residuals in the two equations. 

2. Governing Squarsons 

Equations governing the overall adiabatic chermomechamcal defor- 
mations of a viscoplastic block bounded within ehe planes y - ±1  and 
undergoing simple shearing deformations are{13,15] 

v - (l/p)   s,yi (? 1) 

9   - k$,yy  ♦ s7p , (2 2) 

s - /i(v,y - 7p) , (2.3) 

0 - S7p/(1 + i>/*0)n ,                                           (2 u) 

1        s 
7p - oax(0, -(( )1/ffl - 1)1 , (2 5) 

b      0 
(1 ♦ —)n(l - a&) 

*o 

with boundary conditions 

V(ll,  t)  - ±1  ,  0,y(±l,  t)  - 0 l2  51 

and a suitable sec of initial conditions.  These equations are 
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written in terns of nondimensional variables related Co their dimen- 
sional counterparts, indicated below by a superimposed bar, as fol- 

lows : 

y - y/H, v - v/v0, c - t vQ/H, s - s/sQ , 

$  - l/eo,   B0  - s0/pc, p - p  v /s0, k - k/(pcv0H) ,       .2 7) 
o 

0-J , a  - a80,   b - b vQ/H. 

Here vQ is the velocity imposed on the cop and boctora surfaces of 
ehe block of height 2H and s0 is ehe flow stress in a quasiscacic 
simple shear test.  Equations /2.1) and (2.2) express, respeccively, 
Che balance of linear moment*:« and ehe balance of internal energy  In 
chese equations p  is the mass density, 9   the cemperacure change of a 
material particle from Chat in ehe reference configuration. K  ehe 
chermal diffusivity, 7« Che plastic strain-rate, /J the shear modulus, 
\p0  and n characterize the work hardening of Che macerial, parameters b 
and m describe its strain-rate hardening and a  the thermal sofcening 
Furchermore, a superimposed doc indicaces Che macerial time derivative 
and a comma followed by y stands for partial differentiation wich 
respect to y.  In writing eqn. (2.3) we have assumed chac the strain- 
race 7 has an additiv« decomposition into elastic 7e and plastic parts 

Tp, i.e. 

7-7«/ 7p. l 2 8) 

The internal variable * rather eton Che plastic strain 7p is used 
co describe ehe work-hardening of the material and accounts approxi- 
mately for the history of ehe deformation.  The rate of evolucion of 4> 
is assumed to be given by equation (2.4)  Equation (2.5) states that 
ehe plastic strain-rat* vanishes whenever 

s < (1 + —)n(l • at)', *2 9) 

*o 

ocnerwise it is computed by solving the equation 

s - (l ♦ —)n(i - *$)  (i + b 7p)
ffl       <: :o) 

*0 

which is a slight generalization of the Liconski equation. \ 
decailed discussion of consticucive assumptions (2 +) ,   (2 5). (2 ^ ' 
and (2.10) is given in Refs. 13 and 16.  The boundary conditions >2 6) 
imply chac ehe body is placed in a hard perfeccly msulaced loading 
device in ehe sense chac Che cangencial velocicy is prescribed on its 
cop and bottom faces which do not exchange heac with their surround- 
ings 

For ehe inicial conditions we cake 
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v(y,0) - y, ^(y,0) - 0 , 

0(y,O) - 0.1 + 0.1 (1 - y2)9 exp(-5y2),        (2 11) 

s(y.O) - (1 - a0(y,O))(l+b)m , 

and seek solutions which exhibit the properties 

v(-y . - -v(y.c), s(-y,c) - s(y,t), 0<-y,t) - 8(y,z) (2 12) 

Thus the problem needs to be solved on the domain 0 < y < 1 wich 
the boundary conditions (2.6) replaced by 

v(l,t) - 1, S,y(l,c) - 0, v(0,t) - 0, *,y(0,t) - 0    [2   13) 

The initial conditions (2.11) imply that ehe transients have died 
out. The second term on the right-hand side of (2.11)2 gives the 
temperature perturbation which simulates a material inhomogeneity or 
defect in the body. The size and shape of the temperature perturba- 
tion is supposed to model the strength and distribution of the mate- 
rial defect. The final width of th» shear band should not depend upon 
the assumed form of (2.11>2 which vu also used in Refs. 13-16. The 
body is initially taken to be heated to a temperature of 0.10 to 
reduce the CPU time required to solve the problem. Our aim here is to 
see how the residuals in the balance of linear momentum and balance of 
internal energy are distributed, refine the mesh accordingly, and see 
if the mesh refinements lead to superior results. 

We use Galerkin's approximation!22] and piecewise linear finite 
element basis functions co derive a semi-discrete formulation of :ne 
problen defined by equations (2.1) - (2.5), (2.11) and (2.12), and :he 
Crank-^icoison method co integrate the resulting nonlinear coupled 
ordinary differential equations. The details of obtaining the nonli- 
near algeoraic equations from (2 1) - (2.5), (2 11) and (2 12) are 
given in Ref. 15 

3   An Adaptive ^esh Refinement Tecnnique 

Ue employ ehe method of scaled residuals, similar :o tnac outlined 
Dy Carey ana Oden(231, to selectively refine "he mesh in appropriate 
subregions of the domain  Thus it is tacitly assumed that a large 
scaled residual in a subregion implies that the solution is inaccurate 
"here.  Other refinement criteria such as the gradient of a solution 
variable exceeding a preassigned value could have been employed.  «That 
is the most appropriate rule for the problem at hand is an open ques- 
tion  No a,priori estimates are available because of the scrong 
nonlmearities present in the problem.  We have used the following 
procedure to refine the mesh adaptively in the spatial domain 

1 Define an initial mesh M° and find an approximate solution of 
equations i'2.i) - ^2 6) and (2 11) until the time tne iiesn is 
to oe checked for oossibie refinement 



e       1 2 
R     -   — ( r 

*e , fle 
a 

2.  Using the solution computed in step 1, calculate the scaled 
element residual 

dy)1/2 , a  - 1,2 (3 1) 

Here *e is the length of element Qe, and 

1 
ri - v^ - - sh,y t (3 2) 

P 

ro - 9h  ■  k 0h>vv - sh7h, (3 3) 
• yy        p 

Che superscript h indicates that the corresponding field vari- 
able is computed from the approximate solution,  tfe note chat 
r^ and r2 equal, respectively, ehe errors in satisfying ehe 
balance of linear momentum and the balance of internal energy 
Ve have used 4-pomt Gauss quadrature rule to evaluate numeri- 
cally the integral in equation (3.1). 

3  Find Che mean R^ (M°) and ehe standard deviation aa  (M°) of 
ehe set 

e 
(R } of scaled element residuals. 
a 

4.  Cycle over eh« elements.  If in an element eicher 

C1 - (R - R1)/a1 > 1.0 , - (3 4) 

or 

e 
Co - (R - R2>/a2 ^ l0 ■ (15) 

subdivide ehe element into cvo equal elements  At ehe newly 
introduced nodes ehe variables are assigned values ootamed by 
linear interpolation of ehe solution computed >n step 1 

5  The mesh K° is replaced by this new mesh, and we repeat steps 
1 ehrough a 

Results for a Sample Problem 

We illustrate the aforementioned adaptive mesh refinemene tech- 
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nique by computing results for a sample problem and assign values co 

various material and geometric parameters as follows: 

p - 3.928 x 10*5, k - 3.978 x 1CT3,, u - 240.3, a  - 0.025,,       (4 1) 

n - 0.09, *0 - 0.017,, a - 0.4973, b - 5 x 106 , 7o - vQ/H - 500 sec'
1 

These values, except for a,   are for a typical steel.  Ue chose a 
rather high value for a, equal to seven cimes chat for a typical 
steel, to cut down on Che CPU time required co solve ehe problem.  Not 
knowing in advance at what values of time c co refine ehe mesh, we 

tried the following three alternatives: 

1. Refine the mesh at c - 2 as , 20 as, ^0 4S, 60 as. 30 us, 100 

ßs.   120 /is. 140 MS, 160 as, and 180 as 

2. Refine the mesh ac t - 2 /is, 70 Ms. 80 as, 90 us. 100 as, 110 

as. 120 as, 130 as, 155 as, and 180 as 

3. Refine the mesh ac c - 2 as, 60 as, 120 ßs,   130 as, 140 as, 
150 ßsy  160 ps,   170 as,, 180 ps,  and 185 ps. 

3 . or 

l_2vL 

= 20 uxc 
ZC      C     2 5      C5C      C    '5 

"i - coordinate 

0    GC      2    25      0.50      0    r5 00 
Y ■ coordinate 

t   = 00  ^scc 

30      025      050      O    '" 5 
V - coordinate 

ripure I, Distnoution of cne refinement criterion C, and C, at : 
20 JS, -+0 -S and bO as. 'Solid Line: Linear Momentum; 
Dotted Line:  Internal Energy) 
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For each one of these choices, different mashes were computed for 
c - 140 ßs  but the results were virtually Indistinguishable up to and 
including c - 140 ps.  Also the deformation had localized prior Co ehe 
next refinement of the mesh.  We took the solution at t - 120 fjs as 
the initial data and restarted the job wich the mesh co be refined at 
every 4 /JS interval until t - 140 /JS .  The mesh was noc refined 
subsequently.  The initial mesh at t - 0 had 20 uniform elements.  The 
final mesh at t - 140 ^s had 458 non-uniform elements of which 423 
were located between 0 and 0.10. 

r 

0.000    0.C25    0.030    0.073   O.I00 
V - coordinate 

o.ooo o.oas c.oso o.o/s a. IOD 
Y - coordinate 

5 . O 

|     3.5 

■c nr-JL*i. 
i 

w u 
%     °-0J 

t f\/1/\ i \ r ^ 

c 

*-2-5 

-5-0 
t = 120 jisec. 

c 

u 
c   o. 
o 
£ 
o 
r. 

0.0 OO   0.025  O.OSO  0.07*5  0.   I OO 
V - coordinate 

O.OOCJ O.OJS O.OSO 0.075 O. lOO 
Y - coordinate 

Figure 2.  Distribution of the refinement criterion C. and C. at c = 80 us, 
100 us, 120 ps, 124 us.  (Solid Line:  Linear Momentum; 
Dotted Line:  Internal Energy) 
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3.0C3  0-025  :    0500.0750.': 
Y • coordinate Y ■ coordinate 

-3.0L 
t - 136 ^scc.' 

0.000  0.023  0.03O 0.075 O. "00 
Y • coordinate 

0 . 000  O . 025   0 ■ SSO  C    CSO. 

Y • coordinate 

Figure 3.  Distribution of ehe refinement criterion C. anc C, at t * .-3 -i 
132 n.,   136 us, 140 -s.  (Solid Line:  Linear Momentum; 

Dottea Line:  Internal Energy) 

Figure I depicts the distribution of the refinement criteria Z^ 
and C? at c - 2  as, 20 ps,   ^0 MS and 60 ^s.  Initially the 
distribution of scaled residuals in equations expressing the balance 
of linear momentum and the balance of internal energy require refine- 
ment of the mesh in different regions  However, for t > 60 as the 
scaled residuals in both equations are relatively high only near the 
center of the block.  Thus, we have plotted in Figures 2 and 3 tne 
distribution of Ci and C2 within 0 < y < 0 10 ac : - 80 ps, LOO us, 
120 MS, 124 as, 128 MS, 132 MS, 136 MS and 140 MS  Hie values of Ci_ 
and C2 were less than 1 0 for y > 0.10 at the discrete values of t 
listed in the preceding sentence  For c - 30 MS, 100 MS, 120 as and 
124 MS C? varies smoothly and its magnitude does not change a great 
aeal  Starting at t - 100 MS the values of C^ oscillate quite a oit 
bat are generallv less than 1.0.  This may be an indication of :ne 
initiation of tne localization of the deformation  At t - 128 as, \2'. 
as, :36 MS and 140 ps, ehe region where Co and C2 undergo severe 
oscillations progressively narrows down to tr*ac near y - 3  AC t - 
136 MS and 140 MS ooth C^ and Co are generally less than I  0 for / ± 
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O - 7- 5 

O - S C: 

=r  C ■ 5 

O ■ -A S 

O • 3 S 

2 OC 

O.COO 0.023 O-OSO O-OTS O . IOC 
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1   . sc 

i     .   2 S 

^    . OC 

.   7" 5 
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/    / 
'    / 
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i    '   / 
; '/ !/ 
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C.CCO    0.025    O.OSO    O  .   O 7- S 
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Figure 4.  Spatial distribution of the temperature, snear stress and 
plastic strain at Y   ■ 0.142.  (Solid Line:  Uniform 
Mesh; Dotted Line: aKlfined Mesh) 
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0.025 implying thereby chat some of the nodes could possibly be 
removed from this region.  We are now in the process of adding to our 
code the capability to combine two or more elements into one and 
dividing one element into two or more elements expending upon the mag- 
nitude and sign of (Cj - 1.0) and (C2 - 1.0). 

In order to see the improvement, if any, in the results computed 
with a mesh refined adaptively as compared to those computed with a 
uniform 100-element mesh we have plotted in Fig. 4 the spatial varia- 
tion of the temperature, plastic strain«rate and the shear stress. 
These results confirm the expectation that the adaptively refined raesh 
can resolve sharp gradients of the deformation fields within the 
region of localization.  From the distribution of the plastic strain- 
rate it is transparent that the width of the shear band as computed 
from the adaptively refined mesh is very small as compared to that 

with the uniform mesh.  With the latter mesh it equals the size of one 
element cle    indicating chat the mesh is too coarse.  Also with ehe 
uniform mei     oscillations in the value of the shear stress from 
node to node  .^ very large as compared to those with the adaptively 
refined mesh.  The data plotted represents the average of the values 
at two consecutive nodes.  These oscillations in the shear stress are 
probably due to the propagation of an unloading elastic shear wave out 
of the region of localization.  The propagation of the wave is not 
clearly resolved because of the tin* integration scheme used herein. 

Pjscussjori, and Conclusion? 

The use of an adaptive aesh refinement technique based on distrib- 
uting ehe scaled residuals uniformly throughout the domain for solving 
ehe adiabatic shear band problem has enabled us to resolve adequately 
the sharp gradients of the deformation field within the region of 
localization.  Initially, refinements of the mesh are required by the 
scaled residuals in ehe equations expressing the balance of internal 
energy and Che balance of linear momentum.  As the deformation begins 
eo localize near ehe center of the block, the scaled residuals in ehe 
energy equation stay essencially equally distributed except when ehe 
localization is in progress earnestly  However, ehe scaled residuals 
in ehe linear momentum equation oscillate and ao necessitate the 
refinement of ehe aesh in several regions. 

The computed results indicate chat ehe aesh can be refined less 
frequently prior to ehe onset of the Localization but ought Co be ref- 
ined very frequently subsequent co ehe iniciation of ehe localization 
of the deformation.  We are now working on ehe adaptive refinement of 
ehe mesh in ehe eime domain 
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\BSTRACT 

MARCHAND and Duffv have reported detailed measurements of the temperature and strain as a shear band 
develops in a HY-100 stec! Assuming their torsional tests in thin-wall tubes can be adequately modeled 
bv a viscoplasuc block undergoing overall adiabatic simple shearing deformations, we investigate the effect 
of modeling the viscoplasuc response of the material by a power law. and tiow rules proposed bv Luonski. 
Bodner and Partom. and Johnson and Cook. Eacii ot these tlow rules is nrst calibrated bv using the test 
data 41 a nominal strain-rate of 3300 s"' Then predictions from the use o( these flow ruies at nominal 
strain-rates ol 1400 s ' and 1600 s are compared with the experimental findings It is found that the 
Bodner-Partom law and the dipolar theory proposed by Wright and Batra predict reasonably well the 
main features of the shear band formation in a HY-J00 steel 

I.   INTRODUCTION 

THE DEVELOPMENT of shear bands in metals undergoing plastic deformations at high 
strain-rates usually precedes shear fractures. For this and other reasons their study 
has received considerable attention during the las>t ten years. ROGERS (1983) and 
TIMOTHY I 1987) have surveyed various aspects of shear banding. BAI I 198 IK CLIFTON 

< 1980) and BURNS I 1985) among others have investigated conditions which will lead 
to the growth ordecay of perturbations superimposed on a viscoplasuc body deformed 
homogeneoubly in simple shear, VIOLINARI and CLIFTON I198"), TZA\ARA& il^X") 
and WRIGHT (1990) have studied the problem in greater detail. For rigid perfectly 
plastic materials. WRIGHT I 1990) ha» developed a criterion that ranks materials 
according to their tendency to torm adiabatic shear bandi 

The numerical study ol shear banding ha* been conducted, among others, bv 
SHAWKI in at 11983). WRIGHT and BATRA (1985). BATRA <I9S~>. BATRA .inu KIM 

I 1990). ANAND et at. 11988). MEEDLEMAN I 1989). LEMONDS and NFEDLEMAN < I98ba. 
1986b). and BATRA and LIL (1989) These works have employed different viscoplasuc 
flow rules and have examined, qualitatively, different Aspects ol shear banding >n 
simple shearing and plane-strain compression problems A matenal inhomogeneitv 
or defect hdi> been simulated bv either introducing a temperature perturbation or 
assuming the existence ol xveak material at the site of *he detect 
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Most of the earlier experimental work (e.g. ZENER and HOLLOUOV 1944. Moss. 
1981 . COSTIN et dl.. 1980) has reported observations made alter the shear hand had 
formed. Recently HARTLEY et ai (1987). GJOVANOLA (1987). and MARCHAM) and 
DUFFY (1988) have given histories o( the temperature and strain within a band as it 
develops. Thib facilitates a detailed comparison ot' the numerical and experimental 
results undertaken here. We presume that the torsional experiments of MARCHAND 

and DUFFY (1988) on thin-wall steel tubes can be analysed by studying the ther- 
momechanical deformations of a viscoplastic block undergoing overall adiabatic 
simple shearing deformations. We consider four different flow rules, namely the power 
law (e.g see SHAWKI et aL 1983), and those due to LITONSKI (1977). BODNER and 
P\RTOM (1975). and JOHNSON and COOK 11983) Also, because of the presence of steep 
strain gradients near the edges of the shear band, we consider the effect of including 
strain gradients and the corresponding dipolar stresses in the analysis We note that 
WRIGHT and BATRA < 1987). COLKMAN and HOLXJDON 11985), and ZBIU and AJJ-ANTIS 

(1988) have considered the effect of strain gradients in their works. DILLON .\nd 
KRATOCHVIL (1970) motivated the consideration ot strain gradients and dipolar 
stresses as one way to account lor the interaction among dislocations 

The computed resuib show that the dipolar theory predicts, quantitatively, various 
experimentally observed features of shear banding very well The Bodner-Partom law 
for nonpolar materials also predicts well the initial growth of the shear band. Other 
tlow rules fail to predict, in a noticeable way, one or more aspects of experimental 
results. This should not be taken as the final word for these viscoplastic laws since 
our calibration technique used .to rind values of various material parameters involves 
solving a nonlinear coupled therrnomechamcal initiai-boundary-vame problem and 
we may get the same stress-strain curve for different combinations of the values of 
material parameters. Nevertheless the computed results do favor exploring further 
refinements of the dipolar theory and the Bodner-Partom law 

?    FORMULATION OF THF PROBLEM 

A realistic modeling of MARCHAND and DUFFY s (1988) experiments on the listing 
of thm-wall tubes requires analysing three-dimensional therrnomechamcal dynamic 
deformations of a viscoplastic body Postponing 'his ultimate goal and driving to lind 
the most appropriate viscoplastic flow rule, we study here dvnamic thermomechatiieal 
deformations of a viscoplastic block undergoing overat' adi.'^atie simple >neannü 
deformations in terms of non-dimensional variables, the governing equation>> ^an be 
written as le g ^ee BATRA. 198") 

f)v = is-h ),,   0 < v < i, i-l) 

ti^kti b-cp-W.>, o < i- < i. i::) 

n = ptlv.i -</P). (2 4) 

,'p = gis.a. ,'p.cA,fA/). \Z 5) 
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tL, = lh(S.(T.\'p.d^O.I). \2 6) 

These equations, written for dipoiar materials, reduce to those for nonpolar materials 
when / is set equal to zero. Here o is the mass density, r is the velocity o( a material 
particle in the direction of shearing, a superimposed dot indicates the material time 
derivative, s is the shearing stress. / a material characteristic length, rs the dipolar 
stress, and a comma followed by y signifies partial differentiation with respect to 
Furthermore, k is the thermal conductivity, ;-p is the plastic strain-rate. dv the dipolar 
plastic strain-rate, u the shear modulus, and $ is the temperature change from that in 
the reference configuration. Whereas (2.1) expresses the balance of linear momentum 
and (2.2) the balance of internal energy, (2.3)-:2.6) are constitutive relations. The 
different viscoplastic flow rules differ in the functional forms o( g and h and are 
discussed below in the next section. 

For the initial conditions we take 

Ciy.O) nO,l(l'.0) =0,«r(r,0) =0. 

(HvJ)) =o(l-r)"e  M" i2D 

That is. in the initial rest btate o\' the block, it is taken to be stress free The initial 
temperature distribution simulates the defect or mhomogeneity in the block assumed 
to be present near the point r = 0: the value of c represents the strength o( the defect. 

We presume that the overall deformations of the block are adiabatic and the lower 
surface is at rest while the upper surface is assigned a velocity that increases linearly 
from 0 to I in time :r and then stays at the constant value of I 0. Thus. 

0,(Q.i) =0A(1,/) S0,(10J) =0. (2.S) 

r<l.if) = ttt^  0 s: t ^ ir% 

-I,   O ir i2ß) 

and for dipolar matenals. we also assume that 

rr(0.r)=0,   <7<l.n=0 (2.10) 

Computations for the domain - I ^ v ^ I and with boundary conditions ft\ — I. /) = D. 
(Til.t) = 0 have given aiO.n = 0. 

5    VISCOPLASTIC FLOW RULES 

? 1   Luonski\ law tor nonpolar and dipolar materials 

WRIGHT and BATRA I I987"I generalized the constitutive relation proposed bv LITON- 

SKI (I97~) to be jpplicaole to nonpolar and dipolar materials Thev assumed that 

rp  =   \,.      ^ a      n 13  I) 

and postulated that 
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A = max 0. 

,<l-xtf)   1~ — 

bsc 

st = (r + <r)' :, 

(3 2) 

(3.3) 

(3 4) 

Here i// may be viewed as an internal variable that describes the work hardening o( 
the material. Its evolution is given by (3.4). In (3.2), 11 —zti) describes the softening 
of the material due to its heating, h and m characterize its strain-rate hardening, and 
i//„ and n its work hardening. Note that the rate of growth of«/ is proportional to the 
plastic working. Besides the yield stress in a quasistatic simple shearing lest which 
has been used to non-dimensionalize stress-like quantities, there are rive material 
parameters 2. h. m. i//„ and n For dipolar materials, we also need to specify / 

In (3 2H3.4) it is implicitly assumed that 

0.5) 

descnbes the loading surface, and if the local state given by [s. u, i(f,8) lies inside or 
on this surface, the plastic strain-rate and the dipolar plastic strain-rate vanish. 

3 2. Power law 

For nonpolar materials, COSTIN et at. 11980) and MARCHAND and DUTY I 19X8) 
have described the dynamic stress-strain curve for steels as 

Here ■■, is the strain at vield in a quasistatic simple shear test tor which   , = 10  * > 
fl) is the relerence temperature and 0 the current temperature o( a material particle in 
degrees Kelvin. In order to use the power law. ^vc assumed that there is no loading 
surface and that 

Thus in addition io the yield stress in a quasistatic simple shear test   .here .ire :i\e 
material parameters   „    . >n. n and v 

3 3   Botiner-Par torn Mix 

For nonpolar materials undergoing simple shearing delormations. the constitutive 
relation proposed by BODMR and PXRTOM I 19*5) can be written as 
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K= Ki-[Ki-K»)expi-mWj (3 9) 

VP = O0 exp n = U-+h. {}$) 

Here $ is the absolute temperature of a material particle. W9 is the plastic work done, 
and K may be considered as an internal variable. D0 is the limiting value of the plastic 
stram-rate and is generally set equal to I08 s "' Besides £>0, we need to specify a. Ky. 
£0, m and b to characterize the material We note that there is no loading or yield 
surface assumed in this case also. 

3.4. Johnson-Cook law 

JOHNSON and COOK (1983) tested several materials in simple shear and compression 
at different strain-rates and found that 

-«"[{^ärtM.-n-10} (3 10) 

r»<0-tfn)'<0,-do). 

describe well the test data. Here A, fl. n. x. c and 0m are to be determined exper- 
imentally For tfm equal to the melting temperature o\' the material and t)n equal to 
the ambient temperature, they tabulated values of other parameters for several 
materials. The relation (3.10) is valid for nonpolar materials and presumes that there 
is no loading surface. 

4.   CALIBRATION PROCEDURE 

4.1. Determination of material parameters 

For HY-100 structural steel. MARCHAND and DUFFY 11988) have given the dvnamic 
and quasistatic shear stress-shear strain curves found at strain-rates o( 3300 s and 
10 4 s respectively They also reported the values o( the exponents m. n and v for 
the power law 

In order to calibrate the various flow rules against the same test data we solved, 
numerically, the initial-boundary value problem outline in Section 2 with 

><r.0) = l.0,    ;pi i*.0) =0 012.   m.O) = r.    i)|i.())=i)C.      = O. 

r(!./) = ll).   'M0. f|ai),    fM0.n«i).    fMl./)=0,    Aj = "X60kgm 

i = 473 J'kg C.    k = 49 73 W nr C.    H = 2.5 mm.      , - 5300-» 

Here H is the height o( the block and , is the average applieü strain-rate With no 
initial temperature perturbation, the block detorms uniformly and homogeneously 
and the dipolar effects vanish identically In oraer to keep to a minimum the numoer 
o( parameters to be varied, we kept, as far as possible, the values ot the >tram- 
hardening exponent and the strain-rate hardening exponent equal to those given bv 
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0.00 
0.00 0   IS 0.30 0   45 

Average Shear Strain 

Fie.  I   V comparison ol the snear "»tress shear strain turves computed hv sokinu .m imtial-houndar\ ' .uue 
problem vviih uulerent llow rules ^uh ihe experimental stress strjin uir\e .»I Martnami mu Duilv   n i 
nominal strain-raieol 3300 s    tor J HY-100 structural sicel experimental.  --      Bouner Pariom. 

Litonskiinon-polari,    -- Litonskiidipolan  —    —   —Power.—      —      Johnson COOK 

MARCHAND and DUFFY I 1988), and adjusted the values o( parameters describing the 
thermal softening of the material tilt the computed stress-strain curve came out close 
to that given by Marchand and Duffy. For curves depicted in Fig. I, we used the 
following values of various material parameters. Note that these curves approximate 
closely the experimental curve well beyond the value o( the nominal strain at which 
the peak in the stress occurs, 
(a) Litonski law for nonpolar and dipolar materials. 

x = 000185   C.    0„ »0 011    /? = D107,   „, = 0 0117.    />=l04s.    / = 0005 

(b) Power law 

„ = 10   's , =0011    >Kt = 500K.    m = 0 01 T     n = 0 HP =   -0 

(C) Bodner-Partom law 

a = I200K. h = 0. K = : ^ K, = > 21  m = 5 0. /), = I0fl s 

id) Johnson-Cook law 

\ =1)45. 5= 1.433.« =0 107. >>„->>„ = 1200 C. i = 0 " L =0 02"" 

We note that the computed curves mimic reasonably weil the experimental one oil 
the shear stress begins to drop catastropmcaliv This rapid drop ol the shear sties-» 
with increasing shear strain smarting with an average strain ot 0 50 in the experimental 
stress-strain curve is due to the initiation and growth ol a shear band We need o 
simulate a defect in the specimen in order to reproduce 'his part ot the uirve 
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\ .35 

<£0.90 

0.45 

0.001 
0.0 0.2 0.4 0-6 0.3 

Average Shear Strain 

FIG   2   Shear stress-shear strain <.ur\es computed with Jillerent llow rules hut with 'he same initial 
'emperature perturbation See Fig  I tor the description ot various curves 

4.2. Determination of the uze of the perturbation 

MARCHAND and DUFFY (1988) found that ehe thickness of their specimens was 
uniform in the circumferential direction but varied from 5-10% in the axial direction. 
This and possibly the slight variation in the material properties served as the triggering 
mechanism for the initiation of a shea/ band. Here we model the cumulative effect o( 
these inhomogeneities by assuming a nonuniform initial temperature distribution as 
given by Eq. (2.7). BATRA and Liu (1990) have shown that different ways of modeling 
a material mhomogeneity give similar results. 

fdeally, *the same value of i in (2.7) when used with different flow rules should 
initiate a shear band, as indicated by the rapid drop oi the shear stress, at the value 
of the nominal strain observed experimentally unfortunately, as shown in Fig. 2. [or 
.. = I C. different tlow rules predict shear band initiation at widely different values oi 
the nominal strain. No value o\ ,: could be tound that wili cause the shear Wand o 
initiate at the same value of the nominal strain with the different flow rules We thus 
have the following two choices One. to use different values ot „ with the various flow 
rules and the other, to ti\ , and rind the values ot material parameters so as to inaicii 
the computed stress-strain curves with and without the temperature perturbation 
with the corresponding experimental ones This would necessitate changing ihe aiucs 
o\ the strain hardening exponent and or strain-rate hardening exponent also This 
program, though feasible, is verv arduous and could be interpreted as manipulating 
parameters to obtain the desned results We note in passing 'hat tor presumabh he 
same experimental data. HARTLEY et M H987). KLEP\CZKO st M II9X") ana 
MOLINARI and CLIFTON I IW). have given different wilues ol the strain Hardening 
exponent, strain-rate hardening exponent and the thermal softening exponent in the 
power law This alludes to the difficulty m omaming values o\ various .Tutorial 
parameters  Here we ddopi the first approach and :ind    so that different low rutc^ 
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cause the band to inmate at approximately the same value o( the nominal strain This 
is justifiable because we compare computed results with experimental findings mostly 
during the growth o( the localization process, i.e. post initiation period. Also, we 
note that the calibration is done at a nominal strain-rate o( 3300 s . and the com- 
parison o\ results is made for deformations occurring at nonv.nal strains ot' 1600 s ' 
and 1400 s ' For an assigned value of <:. the initial-boundary \ alue problem outlined in 
Section 2 with tr = 0.033 was solved by the finite element method. Values of r. equal 
to I C. 2 C. 5 C and 9 C for the Litonski law for nonpolar and dipolar materials, 
power law. the Bodner-Partom law and the Johnson-Cook law. respectively, result 
in stress-strain curves shown in Fig. 3. Subsequently, these values of ,\ for the 
various flow rules were used. 

5    COMPARISON OF NUMERICAL RESULTS WITH EXPERIMENTAL FINDINGS 

The curves plotted in Fig. 3 vividly reveal that until the time the shear stress begins 
to drop rapidiy. all of the flow rules considered predict material behavior in reasonable 
agreement with the experimental observations For nonpolar materials LitonskiS law. 
the power law and the Johnson-Cook law give essentially a catastrophic drop in the 
shear stress with virtually no increase in the nominal shear strain. This does not agree 
with the experimental data since Vtarchand and Duffy observed that during the drop 
o( the shear stress, the nominal strain increases oy approximately 5%. The Litonski 
law for dipolar materials and the Bodner-Partom law for nonpolar materials do 
predict the gradual drop in the shear stress in agreement with the experimental data. 
However, for the Bodner-Partom law the shear stress does not drop as much as it 

' .80 

SO   90i i 

3   -5 

3   00 
3   30 b 3   30 3   ^S 

Average Snear SUoin 

60 

f:i(j   '   Shear -uress >near siram -ur\e>, ..ompuico   Mih juTcrcnt   low 'uics  inu .vuh  inlert.ni   nuuu 
'emporaiure penurnjiion   The noieuive :>> IO und ihe >i?e oi the 'nuiai temperature periurnaiion m  iruer 
o inuiaie a rapid drop or the shear -.iresb ai an average strain ».lose \<> thai lour.d exnenmeiuaiU  see * Iü 

! for the description oi MMOU' curves 
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0.3 0   4 0.5 0.6 0./ 

Average Shear Strom 

Fit,  4  Growth ol the local -»hear strain within the band as the specimen delorms  "ice h 
description ot various curves The experimental data points arc denoted bv a A. 

lor 'he 

does during the tests. The computed value ot* the shear stress reaches a plateau. Since 
curves plotted in Fig. 3 were tor calibration purposes, these remarks should be 
regarded as general observations rather than a test o( the validity of any of the flow 
rules. 

For a nominal strain-rate of 1600 s"J, Marchand and Duffy have also given values 
o( the shear strain within the band avfive different values o( the nominal strain. We 
note that each data point was obtained in a different test and that explains the rather 
noticeable difference in the values o( the ocal strain within the band tor essentially 
the same value o( the nominal strain for the last two data points. These and the 
corresponding numerically computed results with the different rlow ruies are plotted 
in Fig. 4. Whereas the Litonski law, the power law and the Johnson-Cook law give 
a rapid increase in the local strain once a shear band initiates, the Bodner-Partom 
law and the Litonski law for dipolar materials give general trends in agreement with 
the experimental data. We should add that the values ot the material parameters and 
the size o\ the temperature perturbation were those found earlier and outlined in the 
preceding action. Also, the computed local >tram equals the strain at the center 

With the power law and the Johnson-Cook law, the clastic strain started to oscillate 
during the time the shear stress was dropping This was earlier nointed out bv BAIRA 

ana KIM 11990) and has also been noticed by WRIGHT and W \LTER I 1989) A possible 
explanation tor this is the interplay between the material hardening due to the strain 
and strain-rate effects and the thermal softening This explains the discontinuities in 
the curves computed with these two rlow rules 

The experimental data points plotted in Fig. 5 were taken trom the dau given in 
table 4 ot Marchand and Duffy s paper Each data point represents a different test 
performed at an average strain-rate ot approximateiv 1600 s Since the nominal 
strain ;•*„ at which the shear stress attained the maximum value s„KU is different m 
each test we have plotted in Fig  *    ,, , * , vs > \li( during the time the shear »tress is 
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Flo 5 Plot ol normalised -thcarslnin \s ihe normalised shear stress during the lime sheai NtresMtdroppinu 
wuh increasing strain See Fig I lor the description ol \anous turves 

dropping. There is too much scatter in the experimental data to draw any concKsions 
Since test points 2 and 3 have abscissa values 0.6667 and 0.6546. we take the midpoint 
P on the line joining these two points as representing the average of the results lor 
these two tests. If we take the smooth curve passing through the test point I. point P 
and the midpoint of the line joining points 5 and 6, we obtain a curve essentially 
parallel to that computed with the Bodner-Partom law and the Litonski law lor 
dipolar materials. The scarcity*of the available experimental data makes a better 
comparison difficult at this time. 

Figures 6-8 depict, resnectively. the spatial variation o( the plastic strain. :he temper- 
ature and the flux o( linear momentum when s smiX = 0 667 and /JV1I = 1600 > 
We note that the rlux o( iinear momentum equals the shear stress for nonpolar 
materials and i.y-/<y ) for dipolar materials. By the time the momentum flux drops 
to two-thirds of its maximum value, the shear band should have well developed. In 
order to highiignt the variation ol the shear strain, temperature and the shear stress 
within and near the region o\ localization o( the deformation, we have plotted these 
quantities on an expanded scale in the region around the shear band tenter Both the 
Johnson-Cook law and the Litonski law tor nonpolar materials predict a rather shaip 
drop in tne shear strain at the edges of the band The Litonski law tor dipolar materials 
gives nearK constant values oi 'he temperature and »hear strain within ,t\c ->and The 
power saw and the Bodner Partom law give a rather gradual drop ol the snear strain 
j<\d the temperature with the distance from the center ol the nand With the dipolar 
:h >ry the momentum flux takes on the least value at the band center and increases 
rap il\ as we move away from the center and then decreases and stavs constant 
through most of the specimen The Johnson-CooK law gives a sligndy mgner value 
o( the shear stress at the center ol the band as compared to that at the specimen 
boundary and the rate of change ot the shear stress is constant With the other ilow 
rules the computed values o\" the shear stress came out to ne essentialK constant 
ihrousihout the soecimen 
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14.0 

10.5 

5i   7.0 

3-5 

0-0 
0.0000        0.0025        0-0050        0  0075        0-0100 

Distance from the Center 

14.Of 

0.000 0.025 0.050 0.075 O.'OO 

Distance from the Center 

Fio o Spatial variation of the plastic aram when * \„,, i 0 ho" *JCC Kta   i '-»r the JcNcnntion • 
curves 

Defining ehe band width as the width of the region over which 'he plastic shear 
strain vanes by no more than 5"» of its value at the center die computed bandwidth 
with the Litonski law. the power law. the Bodner-Panom law. the Johnson Cook 
law. and the Litonski law for dipolar materials is found to be Z am 14 am. 14 um. n 
am and 5i am respectively For > \Tn = 0 66. Marchand and DurF\ found the band- 
vvidth to be between 20 am and 55 am depending upon the point o( or>ser\auon 
around the circumference o( the tube. This comparison favors the Bodner Partom 
law. the power law and the Litonski law for dipolar materials o\er the other two rlow 
rules 

In another series ol tests on HY-100 steel conducted at a nominal strain-rate >i 
approximately 1400 s    . Marchand ano Dufh measured the remperature within !he 
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0.0000 0.002S 0.0050 0.0075 0.0100 

Distance from the Center 

oL 
0.000 0.025 0.050 0  07S 

Distance from the Center 

0   '00 

Flo  " Spatial variation ol the temperature wnen > s^, i iioriT See Fiu   ' lor irte uestnnuon >>i \ inous 
vurves  The temperature in  C is ubtaineu rw multmivink! the nonuimonsionai \ Hue rn   (is -' 

■ band The data taken from table 5 ot' their paper is plotted in Fig ^ along with the 
computed results tor , = 1400 > The\ measured die .emperaiure over a -pot 
width ot 35 am wnieh ib larger than the band width In plotting their data, we have 
assumed that the reported temperature in the band occurred at the maximum value 
ot the nominal strain in a test In oruer to minimise the variation in the results among 
different tests we have plotted the measured maximum temperature m the band v> 

„„ , *„ Even though it is hard to draw a smooth curve through the test data. :he 
detector output plotted in rig. 19 of Marchand and Duffy s paper reveals that the 
temperature rises during the last stage of the localization process when the snear stress 
is dropping and that the increase in the average strain during the time temperature 
rises is unout V ■>  This oOservation is in doser agreement with .he results lomnmco 
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F(G.,  Spatial description of the rlux of linear momentum when. \.9<nil ^ 0667 See Fig 1 lorthe description 
of" various curves 

with the Litonski Lw for dipolu. tnuu»nais. Also the computed temperature rise ol 
539 C wuh this rlow rule when v, /*, = I 9i agrees well with the average value of' 
475 C (bund in the eight tests. We should note that the computed temperature within 
the band ol 50 urn width uime out 10 be nearK unilorm Marchund and Duiij 
estimated thai the maximum temperature in the band reached a little o\cr ^00 C 
Since we do not have any failure criterion included in our work, it 15 hard :o decide 
when w stop the computations and thus estimate the maximum temperature rise 

Figure 10 shows how the temperature at the center increases after the peak in the 
shear stress has been attained, ft is interesting to note that the temperature, A hen the 
siiear stress attains the maximum value, is essentially the ^ame for all rlow rules 
However.the rate o\ rise o\ temperature with the drop in the shear >tress tor 'he 
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Shear Mram / Shear Strain at Max  S 

2.2 

:-td ') Temperature at the center \s the normalized ^hear strain The experimental data points are uomueu 
hv a A See Fiu  1 tor die description ot various ^ur\es 

Johnson-Cook law. the power law and the Bodner-Partom law i3 nearly the same 
but differs significantly from that for ihe Litonski law for nonpolar and dipolar 
materials. The transition in the slope of the curves near \ vmj, = I 0 indicates the point 
when the rapid drop in the shear stress occurs and the plastic strain rate rises sharply 
Thus, the computed temperature nse will depend upon the point when the material 
is taken to have failed. As pointed-out by Marchand and Duffy, once the shear stress 
begins to collapse, the load carrying capacity of the member is drastically reduced 
and the matenai has failed. 

4.8r 

3.Si 

2241 

'   21 

o.ol 
0.80 0.35 0.90 0.95 

Shear Strain ,  Shear Strain at Max  S 

00 

FIG  it) The evolution ot the temperature at the center vs the normalized snear strain dunmz die ':me he 
•.near stress is dropping Vc i m     ■ <>! iiw -osA.npUon oi vinous *.aru«. 
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6.   CONCLUSIONS 

*7? 

We have modeled the dynamic torsionai tests of Marchand and Duffy on thin-wall 
steel tubes by analysing the dynamic deformations of a viscoptastic block undergoing 
overall simple shearing deformations. A material defect or mhomogeneity has been 
represented by an initial nonuniform temperature distribution. The focus of the work 
has been to compare predictions of the varous Mow rules with the experimental 
findings during r.he growth of a shear band. For this purpose, we have also used a 
dipolar theory and Litonski's Mow rule as modified by Wright and Batra and studied 
extensively by Batra and his coworkers Whereas it maybe premature to draw definitive 
conclusions, the Bodner-Partom law and the dipolar theory predict many features o( 
shear banding that are in closer agreement with the experimental observations than 
the predictions from the power law. the Johnson-Cook law and the Litonski law for 
nonpolar materials. We note that when finding the values of material parameters for 
different Mow rules, we kept the value o( the strain hardening exponent and the strain- 
rate hardening exponent as close to the test value as possible and varied the parameter 
describing the thermal softening o( the material till the computed stress-strain curve 
essentially replicated the corresponding experimental curve for nominal strain-rate 
equal to 3300 s ' With values of material parameters kept unchanged, computed 
results for nominal strains equal to 1600 s ' and 1400 s ' were compared with the 
corresponding experimental findings. 
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Dynamic shear band development 
in plane strain compression of a viscoplastic 
body containing a rigid inclusion 
Z. G. Zhu and R. C. Batra, Rolla, Missouri 

(Received October 18, L989; revised January :J. l!)90) 

Summary. We study the plane strain thermomcclunical deformations of a viseoplastie body uout.Lin- 
ing a rigid non-iieat-conducTing i*lhpsuidal inclusion «it tlie center. Two different problems, one in 
which the major axis of the inclusion is parallel to the axis of compression and the other in winch it 
is perpendicular to the loading axis are considered. In each case the deformations are presumed to be 
symmetric about the two centroidal axes and consequently deformations of a quarter of the block are 
analyzed. The material of the block is assumed to exhibit strain-rate hardening, but thermal softening. 
The applied load is such as to cause deformations of the block at an overall strain-rate of Ö000 sec-1. 
The ngid inclusion simulates the presence of second phase particles such as oxides or carbides in a 
steel and acta as a nucleus for the shear band. 

It is found that a shear band initiates near the tip of the inclusion and propagates along a line 
inclined at 45° to the horizontal axis. At a nomifal strain of 0.25, the peak temperature rise near the 
tip of the vertically aligned inclusion equals 75% of that for the horizontally placed inclusion. The 
precipitous drop in the effective stress near the inclusion tip is followed somewhat later by a rapid rise 
in the maximum principal logarithmic -.tram there. 

1 Introduction 

A phenomenon which is commonly observed during high strain rate inelastic lietormatton 

oi metals is the formation ot narrow hands of intense thear attain u.sualh «-ailed adiabatic 

^hear bands. These ^hear bands torm during high speed material processing, metal forming, 

and ballistic penetration. This is an important mode i>t deformation a.s these -.hear /one-. 

otten become the sites tor eventual failure of the material 

Since the time Zener and Hollo mo n [1] recognized the destabilizing »»t*ect <>t thermal 

softening n reducing the slope of the stress-stram «-UM«
1
 in ueaii\ adiabatic deformations, 

there have been many analytical 'e.g. Recht [2], Stauer [:!|, Chiton [-!■], Clifton and Moii- 

nan [5], Burns [6], Wright [7], Anand et al. [H\, Bai [!)], Coleman and Kodgdon [10j), 

experimental 'e.g. Moss [11], Costin et al. [12], Marchaiul and Dutf\ [13]) and numerical 

.eg. Clifton et al. [14], Merzer [15], \V\i and Freund [!H|, Wright ami Batra [17], [IS], 

Wright and Walter [I9j, Batra [20]-[22|. LeMouds and Xeedleman [2.'J], |211, Xeedleman 

[25], Batra and Lm [26], [27], Anand et al [2S|) studies aimed it understanding the t.u-tni-, 

that enhance or inhibit the shear strain localization. 

Although it is well recognized that dvnamic fracture i.s significant l\ influenced b\ 

urain boundaries, precipitates and inclusions, inherent voids .mn Maus v\tute -unstrm- 

tuie. md impurities [20], verv little is !%no\vn ibout how «mil inuifiNtnictui.il teatuios 

miluence shear band nudeation ,tiin ziouth   Most >otnputational -near baud models ate 



90 Z. IJ. Zlui and R. C   Batra 

based on the relative ability ot a material to work harden and thermal soften, and metal- 

lurgical influences are taken into account only implicitly as they influence the stress-strain 

and strength-temperature curves. The presence of a material detect has nsuallv been 

modeled by introducing either a temperature perturbation [10]—[22|, [2(5]—28] or assum- 

ing that the material at the site ot the defect is weaker than the surrounding material 

[25], [27]. Of the numerical .studies cited above, LeMonds and Needleman |2:>|, [24], Needle- 

man [25], Batra and Liu [26], [27] and Anand et al. [28] have analyzed the development 

of a shear band in plane strain problems. Of these, only Needleman and Batra and Liu 

have considered the effect of inertia forces. Whereas Batra and Liu assumed that the 

material softens because of its being heated up, Needleman studied a mechanical problem 

and accounted for softening mechanisms through the use of an internal variable. 

In this paper, we study the thermomechanical plane strain deformations of a thermally 

softening viscoplastic solid and model the material inhomogeneitv by introducing a rigid 

perfectly insulated cylindrical inclusion at the center of the Mock. The inclusion can be 

viewed as precipitates or second phase particles in an allow These particles, Mich as outlet« 

or eairbides, are usually very strong relative to the surrounding material, and their defor- 

matons can be neglected. Here we also take the inclusion to be non-heat conducting. 

Whereas Batra and Liu [26], [27] modeled the thermal softening of the material by a 

linear relation, we assume that the flow stress decreases exponentially with a rise in tem- 

perature. Thus, the material never looses its strength entirely even though it becomes quite 

small at very high temperatures. The problem formulation incorporates the effect of 

inertia forces, strain-rate sensitivity and heat conduction. The coupled nonlinear equations 

expressing the balance of mass, linear momentum and internal energy are solved '".umert- 

cally for a prescribed set of initial and boundary conditions. 

2 Formulation of the problem 

We iiturly plane strain thermomechanical deformations ot a i yluuiricai bodv aawng a 

square cross-section and presume that there is a rigid inclusion wiio.se <otitroidal i\is 

coincides with that of the body. The cross-section ot the inclusion is taken ro he eihprical 

with the major axis either parallel to or perpendicular to the a\is ot loading 

We use an updated Lagrangian description [:*(")], where in order to solve tor rhe -lefor- 

mations ot the bodv at time it —   1/1, the configuration at time / > taken is the reference 

configuration. However, the deformations »>t tin» hod\ trom tune ' to tune  /       \h  Id 

be finite. With respect to a fixed set ot rectangular raitesiau coordinate*- a\es, u< denote 

the poMtiou ot a material particle in the * outiguration at tune ' b\ A", mil in the configura« 

tion at time ■/ - \t) bv <, In terms, ot the referential description, the governing '-'(nations 

for the deformable matrix can be written as 

(nJV =0, '2.15 

l)t)e   »   -Vaa    "   7'u'.  ,- -:'' 

which ought to he supplemented bv ippiopnate constitutee leiations uui aiittai and 

houndan iondition.s. Kquatiou.s 2.L.   2 21. an<l ''!.'.)) e\pie«-s, ie«*pe< n\el\   thohai.uueot 

mass, the balance ot iinear momentum, ano the balance ot internal -ueigx    Hete , is rhe 
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mass density ot a material particle in the current configuration at tune / — It. <jt) its mass 
density m the reference configuration at time /, a superimposed dot expresses a material 
time derivative, J = n0lo etjiials the determinant of the deformation gradient Flt — r,,,, r, 
is the velocity ot a material particle in the .redirection, Tta is the first Piola-Kirchhof!' »tress 
tensor, a comma followed by \(i) implies partial differentiation with respect to Xjlxj, the 
usua summation comention ov*r repeated indices has been used, n is the specific internal 
energy, and Qa is the heat fli . measured per unit area in the reference configuration. i"n 
plane strain deformations in the xx — r« plane, the subscripts \ and i range over i and 2. 

• The following constitutive equations are employed to describe the matrix response- 

<r„ = -p(o) dit - 2uDih (2.4) 

T„ m (e„0) X^atu (2.3) 

2« -B [«., (y5 /)] *-"•(! -hl)m, <2M) 

Wh mrt,t - rM, i2.H) 

2/2 = fl,,i>1|(       />,, = /)„ - i Dufii» f2.«M 

/)(oj = £(&«, - n, 12.10» 

onß = o0cö — OoQp(o)iQ:, (2.11) 

where T,;, IS the Cauchy stress tensor, of is the stress m a <(uasi-static simple tension or 
compression test, »■ is the coefficient of thermal softening, /),-, is the deviatonc strain rate 
tensor. /),, is the strain-rate tensor, (),-, is the Kronecker delta, B may be interpreted as tin» 
bulk modulus, >jr is the mass density in the stress free reference configuration, r is the speci- 
fic heat, k the thermal conductivity, and parameters b and m describe the »tram-rate sensi- 
tivity of the material. liere i-, J0> k, c, b and m are taken to be independent ot the tempera- 
ture. Riniation (2.7) is the Fourier law of heat conduction, referred to the reference con- 
figuration. 
Introducing non-dimensional variables 

it    - ** '7„. J)  - ji'<7,t, s      s a,,, r   - r r,,, 

i      tra II. f   -- 7'/T„, x  -- }■ It. ')-<>(>,, 
2.12) 

h   ~hrtU, v   -i-ft,,, n   - U rj,, .5        ._•,._!,. .V XII 

'">      '>',-"'.>>        ,; - k \uTn\tH\,       0t  -   .;„,<,,*' /7   - H a», 

the governing »»({nations become 

'.'      '.". .   - "• -••;J| 

')«/,  - 7'OJI 2.U' 

.y;--v,,     ?^.i(|-"s/)] i    '>/'"'   "ß.i/>». -1">» 

Va ^ -1 ,A\ ,) ,. 2 KM 

*„     -A'- - 1' \,      i Uü/Il  :     '*/ "     '.".. 2 iT 
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where the superimposed bars have been dropped. In Eq. (2.12), 2H is the height of the 
block and r„ the imposed velocity on the top and bottom surfaces. In Eqs. (2.13) —(2.17) 
all of the differentiations are with respect to non-dimensional variables. 

For the simple compression problem, we restrict ourselves to detormations that remain 
symmetrical about both X^ = 0 and X, = 0. With the nondelormable and non-heat- 
conducting inclusion, the boundary conditions for the material in the first quadrant are: 

L'I-0,       Fii-O,      Qx**Q at/.a^sO, 

pt»o,      r« = o,     &*0 at.r, = X, = 0, 

ZW4=0,       Qayt   ^0 on the right surface, (2.18) 

Vi = -U(t),       TXi ~0,       Q2 ss 0 on the top face, 

,., ^ {),       r» sä 0.       ^-Vj, - 0 at the interface i\ between the 
inclusion and the matrix. 

That is, boundary conditions resulting from the assumed symmetry of deformations are 
applied on the lelt and bottom faces, the right face of the block is taken to be traction 
free, and a prescribed normal velocity and zero tangential tractions are applied on the top 
face. All four sides of the block are assumed to be perfectly insulated. The zero velocity and 
the zero heat flux at interface T,, implies that the second phase particle is rigid and non- 
heat-conducting. 

The interface l\ between the inclusion and the matrix has.the parametric represen- 
tation 

X,'      X»1 xy      -fy4 

<i-        62 <i"       bz 

where 2a and 26 are the major and minor axes of the ellipse tespectively. 
For the initial conditions we take 

o(X, 0) = 1.0,       &\(X 0) = 0,       t',(X 0) = 0,       >?(X 0) = 0, (2.20) 

and the loading path is 

( '0.005       0 =t ^ 0.005, 
Uit) = { ' .2.21) 

1 /:') 005 

:J Finite element formulation of the problem 

Because«)! our inability to -,oive the coupled nonlinear partial differential equations i2 V.\> 
to (2.10) analytically, we seek an approximate numerical solution of the problem b\ the 
unite element method. By using the <Ulerkm method and the lumped mass matrix en. 
see Hughes [81]}, we obtain the following semi-discrete formulation of the problem from 
Eqs. (2.13) — 12.1b), boundary conditions rJ.lM, and initial conditions i2 2')) 

d za F(d,'), ,i, b, m. ri. .1.1) 

l/(0) = rf0. (*i2) 

Here </ is the vettor of no lal values oi the ma,s?> denstv two < omponem> of the wlocitv 
and the temperature   The number ot nonlinear ordinary differential equation'» '•> 1) equaK 
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four times the number of nodes. These differential equations are solved by using the back- 
ward difference Adams method included in the LMSL subroutine LSODE. The subroutine 
adjusts the time increment adaptively until it can compute a solution of (3.1) and (3.2) 
to the prescribe:1 accuracy. 

Batra and Liu [26], [27] initially used 9-noded quadrilateral elements. Their subsequent 
work [32] revealed that 4-noded quadrilateral elements provide a better resolution of the 
intense deformation within the region of localization. Thus, we use here 4-noded quadri- 
lateral elements. The finite element code developed by Batra and Liu [26] was modified 
to include the exponential thermal softening of the material. 

4 Xuinerieal results 

The following values of material and geometric parameters used in the calculations are 
representative of a typical hard steel. 

6 --= 10,000 sec,       <r0 = 333 MPa,       k = 49.22 Win1 °C"1,       m =■ 0 025, 

c =473JKg'l°C-1,-      ot = 7,860 Kg nr3,       S = 128 GPa, 
(4.1) 

fl=5mm,       i»0 = 25 msec"1,       » = 0.0025 *C"1, 

a =0.2,       6=0.02   or   a = 0.02   and   6=0.2. 

FINITE ELEMENT MESH FOR SHEAR*AND 

7   7   7   7 7   /  /' / 
"V    '/    /  /    /   /  / /' / ,/' / / / / / r /■ /T 

-V 
" y 

/ r ~ / • 
////, 

"' ^ --'/// /* / 

7////Y / 
~//Y/> s 

/ 

Fits. I. The hr.ite element mesti u*«e<i for the diwivsh >>t Uw* r>r«jtjU«m vhori tin- lurui i-lliptu' un nwnti 
oiaced horuunuiiv 
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For values given in (4.1), Ö0 = 89.6 °C and the average applied strain-rate equals 5000 sec"1. 
Figure 1 depicts the finite element mesh used in the computations when the major axis 
of the elliptic inclusion is along the rraxis. The aspect ratio of the elliptical inclusion is 
taken to be large so as to increase the stress concentration near the vertex of the major 
axis and reduce the CPU time required to solve the problem. The finite element mesh used 
is very fine in the region surrounding the edge of the inclusion and gradually becomes 
coarser as we move away from it. A similar mesh is used when the major axis of the in- 
clusion is vertical. We note that we have not made any attempt to align the element sides 
along the direction of maximum shearing. Needleman [25] has used a mesh with the ele- 
ment sides aligned along the expected direction of development of the shear band. 

The isotherms at five different values of the average strain are plotted in Figs. 2a 
through 2e for the horizontally placed elliptic inclusion, and Figs. 3a through 3e for the 
vertically oriented elliptic inclusion. Due to the high stress concentration at the tip of the 
inclusion, the material near the tip is severely deformed and gets heated up faster than the 
rest of the block. The built up heat makes the material softer but the softer material cannot 
deform very rapidly because of the constraints imposed on it by the surrounding material. 
A 1st) the heat slowly conducts out of this relatively warmer region. With continued further 
straining of the block, the material near the inclusion tip becomes sufficiently hot that 
thermal softening effect exceeds the hardening due to the straining of the material Even 
though the material point near the inclusion tip may become unstable, a shear band need 
not initiate at this time. For example, the one-dim3nsional numerical studies [19]—[22] 
make it clear that a shear band usually initiates at a value of nominal strain far in excess of 
the value at which the shear stress attains its peak value. Once a shear band initiates, the 
material within the band gets heated up very fast. As the shear band grows, the rate of 
temperature rise at the inclusion tip slows down. We have plotted m Figs. 4a and 4 b the 
temperature rise at six points withm the deforming region as a function of the .average 
strain for each of the two cases considered. In each case, the temperature rises at a point 
near the inclusion tip much faster than that at points away from it. The rate of temperature 
rise at points near the inclusion tip decreases gradually and eventually attains a constant 
value. At points far removed from the inclusion tip. the rate of temperature increase is 
essentially uniform implying thereby that the small regions surrounding these points are 
deforming homogeneously. Even though the results for the horizontally and vertically 
aligned inclusions are similar in nature the temperature rise near the inclusio.i tip tor the 
vertically aligned inclusion is considerabh less as compared to that for the horizontally 
placed inclusion In each case, the contours of constant temperature propagate aion&z line«* 
inclined at 45 to the horizontal axis. In the absence of an inclusion, this will be the direc- 
tion of the maximum shearing stress. 

The variation of the effective stress v, defined b\ 

Fin. 2. Isotherms plotted in the reference configuration at different values of the average strain with 
the horizontally placed inclusion 

iai: 4V1{ = O.Uö:JO. Gmax = 5.17 •••■ 1, 2. :$: 1: 5. 
ihj '/dSz — 0.1481). Ömax = 8.63. Sei' part (a) for value«« of H corresponding to different curve«». 
(ci;^c m 0.1887. Ömax = i).62. -••■ 2. 4. o: 8:  lo 
td» ;'a\e = 0.2UUK 0mae as y.82. see part iej for values of f; corresponding to different curve» 
«e> "/avc = 0.2478  Ömax = 1U.46. See part ic) for values of b conesponding to different curves 
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Flu. -1 a. Variation of the temperature rise with the average strain at six different points for the hori- 
zontally aligned inclusion. Coordinates of these points in the reference configuration are:- .4 (0.2052. 
0.000218), 5(0.1782. 0.01625), C (0.009525. 0.02621). D (0.4044,0.00345), £(0.0951. 0.2952), 
F (0.006907. 0.04353) 

u.     41 
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Fiji. 4b. Variation of the temperature rise with the average strain at six different points for the verti. 
eallv aliened inclusion. Coordinates of these points in the reference configuration are. A 01.0002176, 
0.20523). 5(0.01625. 0.17824). C (0.02621, 0.009525). D (0.00345, 0.4044). £(0.2952, 0.09511), 
£(0.04353.0 006907) 

Fie. 3. Isotherms plotted in the reference configuration at different values of the average strain uitli 
the vertically placed inclusion 

ui ;ava = 0.095. Ömax = 6.11. ----2. 4. 6 
fh) ;,j\L. = 0.131. 0~ j_ as 6 So. >>ee part (as for values of b corresponding t»> different curves. 
'cl '.'J.\. — 0.167. 0iTiZS = 7 14. >eo part mi for values of h iorr«»sp<mdina t<> different curve-, 
(d>', AM — O.J93, fJhiX = 7.24. >ee part uu for values of 0 corresponding t<> different curves 
ie>;'^,. = 0.248. ttnus = 7.74.  2. ---- 4; 0 
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too^ 

Fitf. 5. Distribution oi the effective stress within the body .it two different value* of tin- average 
strain with the inclusion aligned along the jyaxis. ia) ; 4vt = U.U53C. ibi ;avii. = 0.2479 
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Fie. <i. Distribution of the stress within the oody at two different values of   he average strain with The 
inclusion aligned along the x2-dxis <ai ;-avt; = »UMö. (b> y^e — 0.247 9 

109 
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Fit. 7a. Variation of the effective stress with the average strain at six different points for the hori- 
zontally aligned inclusion. See Fig. 4 a for tin* coordinates of the six points 
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Pic. 7b. Variation of the effective stress with the averapc strain at six different points for the verti- 
cally aligned inclusion. M'c Fig 4 b for the coordinates of six points 

ih plotted tn Figs 5a and 5 b. and Figs. 6a and fib for the horizontally and vertically plated 

inclusions, respectively In both cases, the stress drops noticeably near the tip of the in- 

clusion and as the band propagates along the 45 direction, the shear stress drops The 

rather small drop of the sheai stress near the other extremity of the 45 line indicates that 

the deformation there Las not localized as much as it has near the inclusion tip Batra and 

Liu [20]. [271 used linear thermal softening law with a rather large value of the thermal 

oftening inefficient and found that once the deformation localized near the site ot the 

defect, H propagated ouiekh along the 45° direction to the other eMge Hen- the thermal 

softening i-. lepic-ented h\ an exponential function and the band propagate*- -douh leading 

one to uuuetture tnat the speed of propagation of the s>heai band if* trough influenced b\ 

.110. 



Dynamic shear bjnd development 101 

, oo- —7 Tf 

\   .'      /■:' 

/  /     /  'i 
i    "... \    /   / 

0 75:     .' '.. .'      <     / 

:   ■:    M: 

"•■.     JA' / 
1_^^ :- ,  

0 so 

-.       0  25 

0 00 

0 CO 

0 00 0 25 Q.SO 0  75 

-   COORDINATE 

0 00 0 25 0 50 0.75 1.00 

X,   -  COORDINATE a 

00 

Pi», v Contours of the maximum  principal logarithmic strain ja!  homontailv aliened inclusion. 
:'a%i! = 0-344:  U.2. O.4. 0.6, O.8. l.O, (bl  vertically 
aliened inclusion, ;-1NC = 0.248: 0.3. -••• 0.5. 0.7. 0.9. 1.1 

the thermal softening law and the value of the thermal softening coefficient used. In Figs 7 a 

and 7b. we have plotted the variation of the effective stress with the average strain at six 

points for the horizontally and vertically aligned inclusions We note that the temperature 

rise at these points was plotted in Fig 4. As for theone-dimensional case, the initiation and 

development of a shear band is accompanied by a rapid drop of the effective stress The 

stress drop at the inclusion tip is significantly more than that at the adjoining point con- 

sidered At points far removed from the inclusion tip, the stress drops only slightly The 

oscillations m the value of the effective stress at points far away from the inclusion tip is 

possibly due to the fact that the rate oi deformation there is small and the stress compu- 

tations involve the division of one small number by another small number For *neh case 

studied, the effective stress near the inclusion tip reaches a plateau after the rapid drop 



0)2 Z. G. Zhu and H   C  Batr;i 

0.9- 

0 0-L 

00 01 

AVERAGE  STRAIN 

0.2 0.3 

Fie. 5*a. Variation of the maximum principal logarithmic strain with the average strain at six differ- 
ent points for the horizontally aligned inclusion. See Fig. 4a for the coordinates of the six points 
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FiL'. i)b. Variation of the maximum principal logarithmic strain v».th the average strain at six differ 
ent points for the vertically aligned inclusion. See Fig. 4b for the coordinates of the six points 

This was not observed in the one-dimensional computations with the linear thermal soften- 

ing, but was found to be the case [33] when the material behavior was modeled bv the 
Bodner-Partom law 

Figures Sa and Sb depict the contours of the maximum principal logarithmic strain 

t - In /., 

where /.,- is the maximum eigenvalue of the right Cauchy-Ureen tensor 

f\i - JTlaXttS 

<4 3. 

(4.4) 
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Let /.;'- and 1 be the other two eigenvalues of Ciü Since the deformations are nearly ISO- 

ehoric. 

In /., =t —In /. (4.5) 

It is clear from these plots that severe deformations occur in a narrow region For the 

horizontallv aligned inclusion, the shear band is rather well defined For the vertical!) 

aligned inclusion, contours of higher values of e have not propagated farther into the de- 

formable block. Note that the nominal strain at which these results are plotted is different 

in the two cases. However, the variation of e with the nominal strain at six points plotted 

in Figs. 9a and 9b reveal that near the inclusion tip e attains higher values for the vertically 

aligned inclusion as compared to that for the horizontally aligned elliptic inclusion For the 

tormer case, the curves of e vs. average strain coincide for points E and F In each case, f 

increases slowly f.rst near the inclusion tip. Subsequently, the rate of growth of f picks up 

sharply and the region surrounding the inclusion tip is deformed more intensely as com- 

pared to the rest of the body. Note that the values of the nominal strain at which *, drops 

sharply and F increases rapidly at the same point near the inclusion tip are different the 

stress drop occurs first Thus, even though the material in a small neighborhood of the 

inclusion tip has weakened, the surrounding material contributes significantly to the load 

carrying capacity of the member and constrains the weaker small region from deforming 

severely. Thus, if one adopts the view point that a shear band initiates when the maximum 

logarithmic strain at a point increases sharply, then the initiation of the shear band in this 

case occurs considerably after the shear strese has dropped precipitously. This differs from 

the results of the one-dimensional computations [19], [33] m which the precipitous drop 

of the <ihearstres6 and the sharp increase of the plastic strain at a point occur simultane- 

ously. 

Figure 10 depicts the velocity field within the deforming material at an average strain 

of 25°,0 and when the major axis of the inclusion is along the -r,-axis There is a noticeable 

change in the velocity field across the 45° line along which a shear band has formed. John- 

son [34] has recently pointed out that Tresca [35] and Massey [36] observed shear bands 

in the form cf a cross with sides inclined at ~45c to the direction of loading during hot 

forging of certain metals. They asserted that the tangential velocity is discontinuous across 

these bands The velocity field plotted in Fig. 10 supports this to some degree We add 

that the velocity field plotted in Fig. 3 of Batra and Liu's paper [2(5] vividly demonstrates 

that the tangential velocity suffers a jump across the shear band. The velocity field for the 

vertically aligned inclusion exhibits a behavior similar to that shown in Fie 10 and the 

piots are not included herein. 

The average compressive force Fy given by 

l 

Fy   —   — )   C72; rf'l 14.61 

<) 

versus the nominal strain is plotted for the two cases in Fig 11 The curve of dash lines 

represents the case when there is no inclusion present The integral in Eq. (4 6i is evaluated 

b\ using values of a2I at quadrature points on the top loading surface Initially. the applied 

force increases almost linearly in each case due to the linear increase of the applied veloc- 

ity The presence of the inclusion necessitates imtialh a larger force as compared to that 

required to deform the homogeneous block Due to the heating of the block caused bv the 

ensuing plastic deformation, the material softens and the load required to delorm it de- 

creases. This decrease in the load is more tor the block with an inclusion because of the 
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Fitr. 10. Wloeiu distribution within the blot-K for tin- inHiiMon. .ilonu tiu- ■rr.i\i<« a .m ixcraut' strain 
of u.247* 
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tuicleation of a shear band near the tip of the inclusion. However, subsequent to the ini- 

tiation of a shear band, the applied force stays lower than that for the homogeneous block 

signifying the lower load carrying capacity of the member once a >hear band develops :n 

it. The oscillations in the applied force are more for the vertically aligned inclusion These 

can be attributed, at least partially, to the fact that the deformation in the top row >f 

elements is not homogeneous and the computations of tractions at the boundary points 

is less accurate as compared to the solution within the block. Xote that contours <>t differ- 

ent values of * and 0 arrive at some elements in the top tou it different instants and thus 

affect the stress distubution in the elements. We believe that the use <>r a finer mesh aouid 
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decrease the oscillations in F„, but this could not he verified because of the limited com- 
putational resources available to us. Also, a finer mesh would improve the resolution of 
the deformation within the band. 

5 Conclusions 

The problem of the initiation and subsequent growth of a shear band ID plane strain thermo- 
mechanical deformations of a viscoplastic block containing an elliptical inclusion has been 
studied by the finite element method. It is found that a shear band nucleates at the tip of 
the inclusion and propagates along the direction of maximum shearing. As the strain rate 
within the band increases, the effective stress in it drops and the temperature continues to 
increase. The maximum computed temperature when the effective stress had dropped to 
nearly zero equalled 987 °C. At a point near the inclusion tip the effective stress drops 
rapidly first. This is followed, much later, by a sharp increase in the maximum principal 
logarithmic strain at the same point. This delay is possibly due to the constraining effects 
of the relatively strong material surrounding the weakened material near the inclusion tip. 
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Shear band development in dynamic loading 
of a viscoplastic cylinder containing two voids 
R. C. Batra and X.-T. Zhang, Rolla, Missouri 
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Summary, We presume that plane strain state of deformation prevails when the interior of a long 
gun barrell or a cylindrical pressure vessel is dynamically loaded. The viscoplastic material of the 
body is taken to exhibit strain-rate hardening and thermal softening. Two thin ellipsoidal voids 
located symmetrically on the horizontal axis and near the center ot the cylinder wall act an nuclei 
for the initiation of shear bands. We note that deformations of the cylinder are nonhomogeneous 
even in the absence of the voids. It is therefore interesting to investigate when the bands initiate 
from the void tips and the interaction, if any. among them. 

It is found that shear bands initiate first at void tips closer to the center of the cylinder. These 
band* propagate faster to the inner surface of the cylinder as compared to those initiating from 
the other void tips which propagate towards the outer bounding surface of the cylinder. Whereas 
contours of constant maximum principal logarithmic strain originating from the outer void tips 
spread out laterally tn both directions a« they propagate into the cylinder, those originating from 
the inner void tips spread out in only one lateral direction as they propagate into the body. 

I Introduction 

Johnson [1| has recently pointed out that Tresca [2) observed hot lines during the forging 

of platinum in 1878, Tresca stated that these were the lines of greatest »tiding, and also 

therefore the zones of greatest development of heat. Subsequently, these hot lines were also 

observed bv Ma.ssey [ty in 1921. He stated that "when diagonal Slipping* takes place there 

is great friction between particles and a considerable amount ot heat is generated" These 

hot lines are now referred to as adiabatic shear bands. Zener ami Hollomoti [4| observed 

:12 am wide .-.hear bauds during the punching ot a hole in a ->teel plate The\ added that 

heating - aused bv the plastic reformation of the material made it lotter uui the material 

became unstable when this thermal »oitening equalled the combined etteifa ot -.trim rid 

■»tram-rate hardening. Suac then there have been numelons anahtical [5|—[131. numerk < 

|14j —[SO] and experimental [31 j—[34) studies aimed at understanding the pinsits urn 

tactors that enhance or inhibit the initiation and development *>i -diear bunds Most ot the 

analytical and numerical works have studied the .simple sheaimg reformations ot 1 visto- 

plastic body and modeled a material defect by introducing (1) a perturbation tn temperature 

*«r stram-iate. < 111 a geometric defect such as a notch or a smooth variation sn the thickness 

ot the specimen, 1111» 1 weaker material at the -ite ot the detect, iv) .1 void, or vi 1 ngi<l 

inclusion 

The previous two-dimensional studies [24]—[30] have presumed that piane -tiam -rate 

ot < letormation prevails in the body Also, the boov utide« goes homogeneous detoi mat ions 

in the aosonce ot a material delect   Here, we stud\ the autiatioii and IUM\ th  »t 1 -ueai 

.13 
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band originating from the tips of a long narrow elliptic void or crack in a hollow cylindrical 
vessel whose inner surface is subjected to an impact load. We note that the deformations 
of the cylindrical pressure vessel are non-homogeneous even m the absence of the void. 
Also because of the tensile hoop stress, the void never coalesces. It is rather interesting to 
explore whether or not the bands initiate simultaneously from the void tips, their direction 
of propagation and the interaction amongst them. 

The computed results suggest that the shear bands at the void tips initiate at different 
times and grow independently of each other. Due to the stress concentration at void tips, 
the temperature there rises. This is followed by a rapid drop in the effective stress. Soon 
after the effective stress drops to nearly zero value, the maximum principal logarithmic 
strain increases sharply. This increased deformation produces more heating which makes 
the material softer and hence facilitates its subsequent even larger deformations. 

2 Formulation of the problem 

We use rectangular Cartesian coordinates to analyze the plane strain deformations ot ,i 
long cylindrical pressure vessel made of a thermally softening viscopiastic material and 
loaded internally by an impulsive load. The cross-section of the body, shown in Fig. 1. has 
two narrow ellipsoidal voids situated on the horizontal axis and the deformations of the 
body are presumed to be symmetrical about the two centroidal axes. Therefore, only the 
deformations of the material in the first quadrant are analyzed. In terms of non-dimensional 

a =05 

ff- - 1 0                                 0 725 
~* . —- »«« ■ —  ■■- ■ M 

Fifc. 1. rros$-secuon of the i-vlindncal bodv studied 
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variables, equations governing the deformations of the body are [26]: 

ö — ovi.i - 0, (2.1) 

ovvi = <*,,,,, (2.2) 

QÖ^ßd.u-Q, (2.3) 

er« = -£(<)-. 1W>„ -T-2/UAP (2.4) 

2/*«-s-(l »6/)m(l - x6), (2.5) 

A» = (»i., ~ Vfti)l2t      2/2 m Bt9Bth      Du - £){, - UWkkdt„ '3.6) 

Q = 2uDi,Dii. (2.7) 

Equations (2.1), (2.2) and (2.3) express, respectively, the balance of mass, balance of linear 
momentum and the balance of internal energy. Equation (2.4) is the presumed constitutive 
relation for the Cauchy stress <x„ where 2/u is defined by Eq. (2.5). In Eqs. (2.1)—(2.7), o is 
the mass density, v% the velocity of a material particle in the direction xu 0 is the temperature 
rise at a material particle, ß is the non-dimensional diffusivity, a0 is the yield stress for the 
material of the body in a quasistatic simple compression te9t, B is the bulk modulus, 
parameters b and m describe the strain-rate hardening of the material, x characterizes its 
thermal softening, Q is the rate of heat generated because of the plastic working, a super- 
imposed dot stands for the material time derivative, a comma followed by an index i 
implies partial differentiation with respect to x^ and the usual summation convention is 
used. 

The non-dimensional variables ar^related to their dimensional counterparts, denoted 
below by a superimposed bar, as follows: 

<J = <r<y„,       I — tu*, Oa,       b = 6#o/ va,       B — Ban, 

90 ~ aot(QoC),       ß = #0O,       x =s .x/ö0,       ö ~ oo,,, (2.S) 

v = f)oVoj/o4l       /* — fc''(o0cr0]?o),       * — JBÄ,. 

Here £„ is the outer radius of the cylindrical vessel, v9 is the final value of the radial velocity 
imposed on the inner surface, t is the elapsed time, c is the constant specific heat, k the 
constant thermal conductivity of the material of the body, and ■«, is the ma&s density in rhe 
undetormed reference configuration oi the body. The parameter » indicates ehe relative 
magnitude of the inertia forces as compared to the tlow stress. 

Detine *,, bv 

ilf m atl - [Bin - 1) - <«p,3) Dkk]<)tt - 2uD., 2M I. 2) 

Thus. 

{V2st,$uf
1'1 *(Ly5)a ~ \ÖH1 -6/)"\ 2.10) 

where we have substituted for 2a from Eq.t2.5l. Equation 2.10) can be regarded is 
representing a generalized von Mises vield Miriace with the tlow -tre>s. riven b\ the right- 
hand side of Eq 2.10), at a material particle depending upon rhe ->tram-iate uvt -he 
temperature rise. 

For the initial conditions, we take 

i:o 
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That is, the body is initially at rest, and has a uniform temperature and a constant mass 

density. We also assume that the body is initially stress free The boundary conditions for 

the material in the first quadrant are taken to be 

vr ~ hit),       vt = 0   and   qT = 0,   on the inner surface AB, (2.12) 

y, = 0, an = 0   and   qx = 0   on the bottom surface BC, (2.13 1) 

(jifnf = 0, and   q • ft = 0   on the void surface, (2.13.2) 

<7rr =0, o*r = 0   and   qr — 0   on the outer surface CD, (2.14) 

(»j =0, <r„ =0   and   qt = 0   on the left surface DA. (2.15) 

Here 7, = — ßß t ts the heat flux, the subscripts r and 0 denote the radial and circum- 

ferential components of a quantity. "'iese boundary conditions simulate the case when all 

bounding surfaces are taken to be perfectly insulated, the conditions imposed by the 

presume«I symmetry of the deformations are applied on the surfaces BC and DA. the outer 

surface is taken to be traction free, and material particles on the inner surtaee AB are 

subjected to zero tangential velocity and time dependent radial velocity This radial 

velocity simulates approximately the effect of impact loading in the interior of the cylinder. 

The loading function hit) is taken to be 

hit) =//0.005,       0^/^0.005, 
(2.16) 

= 1, *^ 0.005. 

We note that the governing equations (2.1) through (2.7) are coupled ami highly non- 

linear. It is rather hard to prove that these equations under the side conditions (2.11) 

through (2.15) have a solution or that the solution is unique. We seek an approximate 

solution of these equations by the finite element method. By using the Galerkm approxi- 

mation [35], we first obtain from Eqa. (2.1) through (2.3) a set of coupled nonlinear ordinary 

differential equations. The number of these equations equals four times the number nt 

nodes in the finite element discretization of the domain. We use four nuclei 1 isoparametric 

quadrilateral elements to discretize the domain ami use the lumped mass matrix. These 

ordinary differential equations are integrated with respect to time bv 1 thing the \dains 

method included in the subroutine LSODE [3b'|. The computer rode developed b\ Batra 

and Liu [27] was suitably modified to solve the present problem. 

3 Computation and discussion 0! results 

Assuming that the gun barrell or the cylindrical pressure vessel is made of a tvpieal ^teel, 

we took the following values for various parameters. 

b - 10,000 sec,       *„ - 333 MPa,       k = 4Ü 22 W m ' C ',       m - 0 025, 

c=473Jkg!  C"1,       <„>, -=7.S00kgm\        5 = l28<iPa, 3.1 s 

\ = 0 0025 Cl.       r„ = 25 m see l.       £, - 25 mm.       Ä, = 50 mm 

Here /?, and /£, denote, respeettw'v the inner and the outer radius ot the pressure vessel 

For value-» given m (3.K 0,, .- *>9 *j V   The location and ieiutiv*> umension-» <»r rhe vom are 

-»noun in Fij:  i  The a.speet tatio <>i the t*tliptk.«ii .mil is taken to he large M> a?» to iucrea.se 
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FINITE ELEMENT MESH FOR SHEAR BAND WITH CRACK 
(R1«I,B2»0 5A/B=6. A=0 025,R=0 75) 

Fljj, 2. Finite element discretization of the region analyzed 

the stress concentration near the void tips and thereby accelerate the initiation of shear 

bands. The finite element mesh, depicted in Fig. 2, is very fine in the regions surrounding 

the void tips and gradually becomes coarser as we move away from them. No attempt has 

been made to align element sides in any particular direction. Needleman [25] used a mesh 

with the element sides aligned along the expected direction of the development of the shear 

band. He pointed out that such a mesh will give a better resolution of the sharp gradients ot 

the deformation within the band. 

In Figs. 3a through :ie, we have plotted contours of the temperature rise 0 at t =«>0t2!). 

0.0149, 0.0177. 0.0191. 0.021!), and 0.0255 respectively The temperatun» rise at i point is 

essentially proportional to the plastic work done there since for t — 0 0255,1 - 51 XJ> and 

the time available for the heat to be conducted away is rather small. In order to decipher 

these contours clearly, we have focussed on a small region containing the ellipsoidal void 

It is clear from these plots that the contours ot temperature propagate towards the bounding 

surfaces of the cylinder as its deformation progresses Whereas temperature contours 

surrounding the right tip of the void fan out laterally in both directions, those surrounding 

the left tip of the void spread out only downward towards the horizontal axis and the upper 

edge only moves longitudinally towards the inner surface of the cylinder The distance 

through which these contours propagate depends upon 0. those tor higher values ot 0 travel 

through a smaller distance implwng thereby that their speeds are less i* «ompaied to rhe 

speed ot propagation of contours ot the lower temperature, [n order to ussess the effett >t 

intense deformations near the void tips on the temperature rise there, we have plotted ill 

Fig. I the temperature rise vs. the radial displacement ot the inner Mirtace ,a tout  utferent 
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points situated on the horizontal axis. Two of these points, namely Q and R, are close to the 
void tips c \\d the other two points, P and S, are near the hounding surfaces. It is clear from 
the plots of Fig. -t that the temperature rise at pomts near the bounding surfaces of the 
cylinder is miniscule as compared to that near the void tips. Also, the temperature rise near 
the void tip closer to the inner surface is significantly more than that at the other void tip. 
We note that the rate of temperature rise at these points is not constant. However, the two 
curves essentially stay parallel to each other after the initial development of shear hands 
near the void tips. Computations were stopped when the temperature at any point reached 
the presumed melting temperature of the material. Unlike the one-dimensional problem, 
the melting of a material point does not necessarily imply that the load carrying capacity 
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<>l the cylinder has been reduced to zero since the material surrounding the melted part of 
the body constrains its subsequent deformations. Whereas in the one-dimenMonal com- 
putations |"V7|, subsequent to the formation of a shear band, the rate of temperature rise 
within the band was a noudecreasing function of time except for the Bodner-l'artom law 
that is not so m the problem being studied herein. Here the rate of the temperature rise at 
a point near the void tips decreases slowly implying thereby that it will eventually reach 
a plateau. For the 2-dimensional problem involving the plane strain compression of a 
viscoplastic block containing a rigid ellipsoidal inclusion studied by Zhu and Batra [20], the 
rate of temperature rise gradually decreased. Zhu and Batra assumed an exponential ther- 
mal softening law. Therefore no material point ever lost its strength completely in their 
computations. 

In order to elucidate how the strain field grows within shear bands and the tegion 
surrounding them, we have plotted contours of the maximum principal logarithmic strain ' 
in Fig. 5a—5e at/ = 0.0129,0.0149,0.0177,0.0191.0.0219 and <J 0255 respectively Note 
that 

F = In/., ^ -In/.. (:V2) 

where /.,-, A.2 and I are the eigenvalues of the right Cauchy-<»reen tensor C\ö defined a> 

The second relation in Eq. (3.2) follows from the fact that the deformations are nearly 
isochonc. It is clear that at any instant the shear band initiating from the left void tip ha*- 
propagated farther into the body than that imtiatmg from the right void tip. A possible 
reason for this could be that the material to the left of the void undergoes more severe 
deformations as compared to that lyii% to the right of the void. The nonhomogeneou> 
deformations of the cylinder, even in the absence of the void, possibly account for the 
different rate of growth of the two shear bands at the void tips. Like the contours of 
temperature, as the shear band develops, contours of suceessivelv higher values of 
originate from the void tips and propagate into the body Whereas contours of f originating 
from the right void tip fan out laterally in both directions as thev propagate into the body 
those originating at the left void tip spread out only m one lateral direction The plot* in 
Fig 6 of s vs. the radial displacement of the inner surface at six points located near the 
horizontal axis reveal the intensity of the deformation within the shear bands We note 
that points T and ü are very close to Q and R respectively Thev were chosen >o as to lie on 
the path of the shear bands. It seems that the rapid growth of the strain within the two 
hands initiates almost simultaneously. However, the rate of growth of 'he deformation m 
the band surrounding the left void tip is noticeably higher than that in the band eiklohiuu 
the right void tip. [t is interesting to note that the changes in the rate of development »t 
the two bands occur essentially at the same time and are similar in nature We note mat the 
maximum value of s in the left band is more than 100 times the maximum value 'it it .ui\ 
point near the inner or outer surfaces of the cylinder A comparison of the curves ot    \*s the 

Fie. ">. Contours of the maximum principal logarithmic strain e .it different  -.dues >>i the d.ipseü 
time 

a t = 0.0129    b t = 0.0149    c t = 0.0L77 
il t = uoilH    t» t = 0.0219    r i = 0.035J 
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Für. ti. The maximum principal logarithmic strain v$. the radial displacement of the inner surface 
at six different points in the region- See Fig. 4 for the co-ordinates of points P, Q. R, S. Co-ordinates 
of other two point« are 7/(0.7138. 0.0034), V<0.7764. 0.0O37) 
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RAQIAL DISPLACEMENT OP 'HE INNER SURFACE 

Pi?. 7. The effective stress vs. the- radial displacement of tile inner surface at six different point- 
in the region. See Ficr. 6 for the coordinates of point? 

radial displacement of the inner surface at points Q awl 7', and R and V reveals that 

contours of small values of >■ propagate much taster than those of large values of t Foi 

example, the time taken for s - 0 437 to travel from point Q to point T equate 1 714 4 aa 

and the distance C/T equal* 0 02405 mm therein jiving rhe speed of contour of /■ = 0 437 

as 14 m/sec A similar exert i*e gives that the ouitour of e = 0.2524 travels between points 

R and .V at a speed ol 115 2 imsec  We note that fhe ^tate oi reformation a\ the legion 
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surrounding points Q aud R for the aforestated values of e is quite different Xeedleman [23], 
who studied plane strain deformations of a viscoplastic block deformed in simple com- 
pression, found that contours of constant values of £ propagated at speeds ranging from 
590 m sec to 2500 m/sec depending upon the imposed nominal strain-rate. The constitutive 
relation used by Needleman is quite different from the one employed herein. 

In Fig. 7, we have plotted the evolution of the effective stress s, defined as 

2st- = *lfs« (3.4) 

at points P, Q, R and ^ previously described. It is evident that the effective stress at 
points P and S that are close to the inner and outer surfaces, respectively, stays essentially 
constant after the initial transients have died out. The small oscillations reflect possibly the 
arrival of the contours of different strain and temperature at different values of the elapsed 
time. The effective stress within the two bands drops gradually to nearly zero. The effective 
stress in the left band is always lower than that in the right band which is consistent with 
the higher values of the temperature in the left band. Recalling the plots of e vs the radial 
displacement of the inner surface in Fig. 6, we see that the rapid rise m the values of s 
within the bands starts after the effective stress has dropped significantly Zhu and Batra 
[29] observed a similar phenomenon in their study of the plane straui compression of a 
viscoplastic block containing a non-heat-conducting rigid inclusion even though they 
modeled thermal softening by an exponential function as opposed to the linear function 
used herein. This is possibly due to the fact that the relatively stronger material surrounding 
the weaker material within the band constrains the deformations of the latter 

Figure 8 shows how the average pressure 

p m -2.1 f <rrr(0.5,0) d9 * (3.5) 

T 
0 000 0.005 0.010 0.015 0.020 

9A0IAL DISPLACEMENT OF THE INNER SURFACE 

Fie. 5>. The average internal pressure vs. radtai displacement of the mnter-irt\ue Homoge- 
neous <.\ under: -nimder with voids 
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on the inner surface vanes with its radial displacement. The dashed curve corresponds to 
the deformations of a homogeneous cylinder and the solid curve to that of the cylinder with 
two ellipsoidal voids placed symmetrically on the horizontal axis. Xote that in the solution 
of the problem, essential boundary conditions are prescribed on the inner surface of the 
cylinder. Subsequent to the development of the shear bands at void tips, as signified by the 
rapid rise of the maximum principal logarithmic strain, the average pressure in the cylinder 
with the shear bauds stays lower than that in the homogeneous cylinder. Tin.- reflects the 
decrease in the load carrying capacity of the cylinder once a shear band has developed in it 

4 Conclusions 

We have studied the problem of the initiation and growth of shear bands at vou t tips during 
the plane strain deformations of a hollow cylinder subjected to an impact load on the inner 
surface. Shear hands are found to develop at each void tip. The band forming at the void 
tip near the inner surface propagates tow arris the inner surface of the cylinder and that 
forming at the void tip near the outer surface propagates towards the outer -urface of the 
cylinder. Whereas contours of the maximum principal logarithmic strain and the tem- 
perature rise originating at the void tip near the outer surface fan out laterally as they 
propagate into the body, those originating at the other void tip fan out only in the direction 
of the major axis of the ellipsoidal void. The shear band at the void tip near the inner 
surface forms sooner than that at the other void tip. 

A review of the results discussed in the previous section gives the following scenario for 
the development of shear bamU at the void tips. First, the temperature in the narrow 
region surrounding the void tips rises because of the stress concentration there. This is 
followed by a rapid drop in the effective stress and subsequently by a sharp mcrease in the 
values of the maximum principal logarithmic strain. The rate of drop of the effective stress 
and that of the rise in the maximum prmcipal logarithmic strain depend upon the material 
parameters and the constitutive relation used to model the material response 
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Dynamic shear band development in a thermally 
softening bimetallic body containing two voids 
U. C. Batra and Z. &, Zhu, Rollar Missouri 

(Received May 18, 1990; revised JLIIV 12, 1990) 

Summary. We study the development of .shear bands in a thermally softening vincoplastie prismatic 
body of square cross-section and containing two .symmetrically placed thin layers of a different 
viscoplastie material and two elliptical voids with their major axe« aligned along the vertical eentroi- 
dal axis of tiie erosa-aeetiun. One tip of each elliptical void is abutting the common interface between 
the layer and the matrix material. Two cases, i.e., when the yield stress of the material of the thin 
layer in a quasiatatic simple compression test equals either five times or one-fifth that of the matrix 
material are .studied. The body is deformed in plane strain compression at an average strain-rate of 
0,001) sec', and the deformations are assumed to be symmetrical about the centroidal axes. 

ft is found tiiat in each case shear bands initiate from points on the vertical traction free surfaces 
where the layer and the matrix materials meet. These bands propagate horizontally into the layer 
when it is made of a softer material and into the matrix along lines making an angle of ±;45° with the 
vertical when the layer material ia harder. In the former case, the band in the layer near the upper 
matrix/layer interface bifurcates into two ban^9, one propagating horizontally into the layer and the 
other into the matrix material alono the direction of the maximum shear stress. The band in the 
layer near the lower matrix/layer interface propagates horizontally first into the layer and then into 
the matrix material along the direction of the maximum shear stress. Irrespective of the value of the 
yield stress for the layer material, a band also initiates from the void tip abutting the layer-matrix 
interface. This band propagates initially along the layeronatrix interface and then into the matrix 
material along a line making an angle of approximately 4ö   with the vortical. 

I  Introduction 

Johnson [l\ has recently pointed out that Tresea [2\ in LH7S and Massey \}\] in liü^l ob- 

served hot tines, now referred to as shear bands, in the form of a cross during the hot 

forgintfi >fa metal. There has heenasurtje of activity in ("his area since the time Zener and 

Kollomou [4| reported :>2 IJLUI wide shear bands during the punching of a hole in a steel 

plate. They asserted that the heat generated because of the plastic working softened the 

material and that the material became unstable when thermal softening equalled the 

cotubuied effects of strain and strain-rate hardening. The experimental observations ot 

Moss [5], Costin et al. [(i|, Hartley et al. [7], Uiövanolä [$}, and Mare hand and Duffy [U] 

have added enormously to our understanding of the phenomenon of shear strain localization. 

Marehand and Duffy have pointed out that for thin steel tidies subjected to a pure torque 

at the ends, the localization of deformation into shear bands --ousists of three stupes. In 

stage I, the body deforms homogeneously. Instate II, stipulated to initiate «lien the shear 

stress at a point attains its maximum value, the deformation becomes non-homogeneous. 

In stage LI I, that occurs much later, the shear stress drops precipitously and the defor- 

mation localizes into a shear band. These experimental observations uiiive with the numeri- 

cal work of Wright and Walter [[()), Moiinart and Clifton [llj, and Batra and Knn | V2\ to 
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[15]. We iiote that there have been numerous other numerical [10]— [24] and analytical 

studies [25]—[32] aimed at increasing our understanding of factors that affect the initiation 

and development of shear bands. These works have analysed the simple shearing defor- 

mations of a vise op las tic bo fly containing a defect. 

Recently, LeMonds and Needleman [33], [34], Needleman [35], Zbib and Aifantis [36], 

Anand et al. [37], Batra and Liu [38], [39], Zhu and Batra [40], and Batra and Zhang [41) 

have studied the phenomenon of shear banding in plane strain deformations of a viseo- 

plastic solid. These works have generally used different constitutive relations and have 

assumed that the entire body or the portion of the body whose deformations were analyzed 

had only one defect in it. The prismatic body whose plane strain thermomechanical defor- 

mations are studied herein is of a square cross-section and has two thin layers made of a 

viscoplastic material different from that of the body and placed symmetrically about and 

parallel to the centroidal horizontal axis. These horizontal planes may be thought of as 

representing planes of chemical in homogeneity. The material of the layer differs from that 

of the body only in the value <J0 of the flow stress in a qnasistatic simple compression test. 

Two cases, namely when rr,, for the layer material equals five times or one-fifth that of the 

matrix material are studied. Also, there are two elliptical voids with major axes aligner I 

with the vertical centroidal axis of the square cross-section and with tips tone hing the 

layer/matrix interfaces. The other ends of the ellipsoidal voids are towards the center of 

the cross-section. The points on the free edges where the thin layer and the matrix materials 

meet as well as the void vertices on the major axes of the ellipsoid act as nuclei for the 

initiation of shear bands. It thus becomes an interesting excercise to investigate the 

initiation and propagation of various bands and the interaction amongst them. We add 

that we do account for the effect of inwtia forces, strain-rate sensitivity of the materials, 

their thermal softening, heat conduction, and the heat generated because of plastic working. 

2 Formulation of the problem 

The cross-section of the prismatic body containing two ellipsoidal Voids and two thin 

layers of a different viscoplastic material is shown in Fig. 1. The deformations of the body 

are assumed to be symmetrical about the two centroidal axes. Thus, the deformations of 

the material in the first quadrant are analyzer I. With respect to a fixed set of rectangular 

Cartesian coordinate axes, equations governing the plane strain thermomechanical defor- 

mations of the body are: 

{oJy = o, i24) 

Ti9 = {olho} ttijfij)      '?,-,■ = — MQ*QH — 0% — "ftJlij,                                           f-.ö) 

2« = [er0/ (]/:?/}] {1  - Mf (I - \0), CUil 

n =-tl 2) BM3ih iä.71 

0*1 - Di} -Ü/31 &w>n, '&S) 

<l     = «>.«?> 'ftA.i, VI L0- r2'M 

r    = ri) -- H[u<s   - [) g/i/i J".lUl 
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x,,X, 

Fiff. 1. The ernss-aeL'tinii of rlie prismatic 
body studied 

Equations (2.1), (2.2) and (2.31, written in terms of the referential description t>i motion, 

express respectively the balance of mnss, balance of linear momentum and the balance of 

moment of momentum. Equations (2.5), (2.9) and (2.10) are the constitutive assumptions. 

In these equations n gives the position at time / of the material particle .Y15 r{ = xt is its 

velocity in the ^-direction, o is its present mass density, £fl its mass density in the reference 

configuration, J = detj^J, xj^ — d%ijdXA, Til is the first Piola-Kirchhoff stress tensor, 

e is the specific internal energy, Qa 
[S tüe aeat mix measured per unit area in the reference 

configuration, and D is the strain-rate tensor. Furthermore, a superimposed dot indicates 

material time derivative, a comma followed by index \{j) implies partial differentiation 

with respect to X, (X/), and a repeated index implies summation over the range fl, 2) of 

the index. In the constitutive relations (2.5), (2.!)) and (2.10), the material parameter B 

may be regarded as the bulk modulus, -T,, is the yield stress in a quasistatic simple compres- 

sion test, parameters b and in describe the strain-rate hardening of the material. \ is the 

thermal softening parameter. 0 equals the temperature change of a material particle from 

that in the reference configuration, k is the thermal conductivity and e. is the spec die heat. 

Both h and r are taken to be constants and we hace neglected stresses caused by the r her ma I 

expansion, 

E<[nations \2.i) through (2.101 hohl in the regions occupied by the matrix and the [aver, 

the only difference being either 

<T0 layer = %& matrix, (2.1 L.l) 

or 

/r„ layer = (1/5) a,, matrix, (3.11.21 

The values of other material parameters are the same for the matrix ami the layer. 

With .s defined by 

s   = fi   -[Bt<> <j» - I) - l%n :ld tr/>[ I, 

- 2»2>, 

'2.12.15 

(2.12.2) 
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equations (2.12), (2.5) and (2.6) give 

(l/2trs*)l/? =(^/|/i") (1 -*0) (1 -6/)'". C2.131 

This can be viewed as the equation of a generalized von Mises yield surface when the flow 

stress, given by the right-hand side of (2.13), at a material particle depends upon its 

strain-rate and temperature. 

For the initial conditions we take 

o(aJfGY = l,       i>(sc,0)=Or       d{xfQ)=Q. (2.14) 

That is, the hody is initially at rest at a uniform temperature and has constant mass 

density. We also assume that the body is initially stress free. The pertinent boundary condi- 

tions for the material analyzed in the first quadrant are 

,., - —k{t)}        Tl2=0    and    & — 0,    on the top surface AB. (2,15) 

7\,=0, V\,=0    and    <?, .— 0,    on the right .surface BC, fg.18) 

r, = 0,        'A2 = {)    and    & = 0,    on the bottom surface CO, (2,17) 

y, - 0,        T2l = 0    and    Q{ = 0,    on parts OD and &dl of the left surface CM , (2.18) 

Ttjfi = 0    and    &.V, - 0,    on the surface DE of the void. (.2.19) 

These boundary conditions simulate the situation when the top surface is moving downward 

with a speed hit), there is no friction between it and the loading device, the right surface is 

traction free, the void has not coalesced and the entire boundary is thermally insulated, ff 

during the deformations of the body,--any point on the void surface touches the vertical 

axis, the boundary condition on it is changed to (2.18). The boundary conditions (2.17) and 

(2.18) are due to the presumed symmetry of the deformations about the je% and ^, axes. For 

the loading function kit) we take 

(2.201 

where Iti is the height of the block and r,y is the steady speed of the top surface. Tbc 

steady speed is reached in time tr. 
At the common interface between the matrix and the reinforcing layer, the velocity 

field, surface tractions, the temperature and the normal component of the heat flux are 

assumed to be continuous. 

3 Computational considerations 

Substitution for T, O and e from Eqs. (2.5) through (2.10) into the balance laws (2.2) and 

(2.;l) results in coupled nonlinear partial differential equations which along with initial 

conditions (2.14) and boundary conditions (2.15) through (2.19) are to be solved for ■*, *' 

and 0. We use the updated Lagrangian method [42] to .solve the problem. That is. in order 

to find the fields of o, U and 0 in the body at time / — .\L the configuration of the body at 

time I is taken as the reference configuration. The governing nonlinear partial differential 

equations are first reduced to a set of coupler I nonlinear ordinary differential equations by 

using the flalerkin approximation [42j and the lumped mass matrix, Figure 2 depict« the 
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t'l?. 2. The finite element discretization of the domain in the stress free reference configuration 

discretization of the stress free reference configuration into 4-noded isoparametric quadri- 

lateral elements that has been used to analyze the problem. The mesh is very fine in the 

region surrounding the void and gradually becomes coarse as we move away from it. The 

layer as weil as a small matrix region adjoining it has been divided into a tine mesh too. 

We add that the coordinates of the nodes are updated after each time increment. Thus, the 

spatial domain occupied by the body and the shapes of these elements vary with time. At 

each node the mass density, two components of the velocity and the temperature are 

unknown. The coupled nonlinear ordinary differential equations are integrated by using the 

Gear method [43] for stiff differential equations. We use the subroutine LSODE taken 

from the package ODEPACK, developed by Hind marsh [44 j, and employed the option of 

using the full Jacobian matrix. The subroutine adjusts the time step adaptively until a 

solution of the con pier I nonlinear ordinary differential equations has been computed to the 

desired accuracy. The finite dement code developed earlier by Batra ;\n<\ Liu [*H] was 

modified to study the present problem. 

4 Computation and discussion of results 

We used the following values of various material and geometric parametei-s to compute 

results that are discussed below: 

b = 10.000 sec, er, = tm MPa, k - Mi.22 Win1   C ', m = 0.025, 

r --= ftft.rkg i   C  K ?„ = 7.SH0 kgifl"3,  B = 128 (IPa. 

U = 3 mm. \\ - 25 msec  ',  \ = 0.0025   C  '. 

i:i.n 
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Thus the average applied strain-rate y equals 5.000 sec"1, #0 = Tcj/fflgd = Nü.frC, ;ind 

i' = ^vv rtr, — 0.015. The nondimeusional number r determines the effect of inertia forces 

relative to the flow .stress of the material. For the simple shearing problem. Batra [211 noted 

that the inertia forces play a noticeable role when v — 0.004. Hence, the inertia forces will 

very likely play a significant role in the present problem. 

We discuss below results in terms of the following nondimensional variables indicated by 

a superimposed bar. 

s = sl(Jn,       o = 010,,       x = .v!II,       I = fiyini}. i%:2) 

Henceforth, we rirop thesuperimpused bam. To measure the deformation at a point, we use 
the maximum principal logarithmic strain r given by 

s — In A, 2* —In /.,, {$.'M 

where/.,-and /..'' are eigenvalues of the right Cauchy-f Jreen tensor Ctli = -''i.>■>';,j or the left 
Oauchy-tJreen tensor Bvj — .rit.,.rKJ. The second equality in Kq. ('XJtVi holds because the 

deformations of the bodv are nearlv isoehoric. 

4J Lttyer tnaierüH mfkr ifunt the matrix material 

Recall that one tip of the elliptical void is at the interface between matrix material and the 

relatively softer layer and the other tip is in the matrix, fu order to find out where the 

shear bands form and their directions of.propagation, we plot the evolution of the maximum 

principal logarithmic strain g at severa^points surrounding the void and at points near the 

common interface between the layer and the matrix material. Figure :ia depicts the growth 

of ;■ at points 5 through 10 and point 16. Point 10 in the matrix is near the void tip that 

touches the common interface, point \) is near the interface and on a horizontal line through 

point 10, point 8 is near the midsurface of the void and point 7 on a horizontal line through 

point 8. point r> is near the other tip of the void and point ;") on a horizontal line through 

point*). Point ll>. not shown in the figure, is the near the vertical centroidai axis but is far 

removed from the void and the layer matrix interfaces. Coordinates of these points in the 

stress free reference configuration are given in the figure caption and their approximate 

locations are shown in Fig. :5a. Results plotted in this figure dearly indicate that at a 

nominal strain of nearlv 0.015, the values of F at points 7, S and 10 increase sharply with 

the rate of growth of .■- at point L0 being higher than thai at points 7 and S. Note rhat the 

value of.- nt point lf> is very «dose to the average strain, and the values of ? at points 0. tj and 

!) are higher than that at point lb' hut considerably smaller than those at points 7,Sand 10. 

Thus the small region eontaining points 7. S and 10 undergoes severe deformations. In 

Fig. :>b, we have plotted the growth of g at points t, 2* 3, 4 and 16. Point l! is near the void 

tip 0. point 1 is on a vertical line through point 1, and the line joining points D. f and :\ 

makes an angle of 45' with the vertical. At an average strain of approximately 0.0If), the 

valuesots at points :i and 4 increase sharply. However, the peak values attained at points 

lv3, Jl and 4 are mueh tower than those at points 7, S and 10. Thus in the matrix material 

surrounding the void, more intense deformations oeeur near the void tip E at the matrix . 

layer interface. In an attempt to assess the deformations of the layer, we have plotted . 

versus the average strain in Fig. 3e at points i I. 12, 13, 14, 15und 17 in the layer. Points i 1 

and 12 are near the matrix layer interface and correspond respeetively rn points ti and If) in 

the matrix, the line joining [joints #, 14 and \'\ makes an angle of lo   with the horizontal, 
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point to is near the vertical centroidal axis, and point 17 in the layer is far removed from 

the void tip. The approximate location of these points is given in Fig. 3a and their coordi- 

nates in the stress free reference configuration are given in the figure caption. Even though 

the values of £ at points 11 and 12 increase sharply in the beginning, they eventually match 

those at points 13, 14 and 15. Recalling that a^ for the layer material equals one—fifth that 

for the matrix material, we may imagine the void to be in a rigid material as far as the 

deformations of the layer are concerned. Thus the deformations of the layer near the void 

tip need not be excessively large as compared to its average deformations. This is borne out 

by the results plotted in Fig. 3c which show that the peak values of s at points 13, 14 and 

15 are nearly twice the average. Because of the continuity of the displacements and tem- 

peratures across the layer/matrix interface, initially points 11 and 12 undergo essentially the 

same deformations as points 9 and 10. The rise in the temperature at points 11 and 12 makes 

the material there softer. The surrounding relatively hard layer material results in redistri- 

butionof the deformations. Note that points 9, 10, 11 and 12 are a little bit away from the 

layer, matrix interface. Thus one may conclude that no localization of the deformation 

into a shear band occurs within the layer material near the void tip. That the temperature 

rise at points 11 and 12 is much larger than that at points 13, 14, 15 and 17 becomes clear 

from the results plotted in Fig. 3d. The plots of the temperature rise at other points con- 

sidered are not included herein. However, we note that the temperature rise at points 7, 

8 and 10 where severe deformations of the matrix material occur was considerably more 

than that at point 16 which is far away from the void. 

We now focus on the deformations of the layer and the matrix materials near points P 

and Q on the right traction free surface. Points P and Q are also on the layer; matrix inter- 

faces. Figure 4a shows the plot of e versu*the average strain at points 18 through 25 near 

the upper matrix;layer interface. Points 18 through 21 are in the layer and points 22 

through 25 are in the matrix, [t is clear that deformations of points 18 and 19 are signi- 

ficantly more than the deformations of other points considered in this plot. Also intense 

deformations of the layer material surrounding point IS propagate horizontally to point 10. 

The deformations of points 21 through 25 are very small as compared to the deformations 

of points 18 and 19. The value of f at point 20 is nearly four times that at point 21. It is 

possible that the intense deformations initiating at point [8 propagate to point 20 too. In 

an attempt to shed some light on what happens to the shear band initiating from point IS. 

we have plotterl in Fig. 4 b values of r versus the average strain at points 24 through 30 

in the matrix. Points 20, 24, 27 and 20 are on the same vertical line with points 20 and 24 on 

the opposite sides of the matrix layer interface. Points 24. 27 and 20 are in the matrix. 

Points 24, 21) and 25 are on a horizontal tine and points 24. 2S and 30 are ou the line that, 

makes an angle of 45° with the horizontal. Relativelv large values of , at points 24, 20, 27, 

28 and 30 seem to suggest that the region surrounding points 24, 20 and 27 deforms severeiy 

and that these severe deformations propagate along the line joining points 24. 28 and 30. 

Since points 20 and 24 are very near to each other, it is reasonable to conclude that the 

localization of deformation initiating at point 18 within the soft layer propagates towards 

point 20 and then along the line joining points 20. 28 and 30. Results plotted at similarly 

situated points near the other interface he twee n the layer and the matrix reveal that ;i 

shear band initiating from point Q propagates horizontally within the layer too and then 

into the matrix along a line that makes an angle of 45* with the vertical. 

The picture of the development of shear bands outlined above is reinforced by the plots 

of contours of ,■ shown in Fig. 5 at three values of the average strain. One shear band 

initiates within the matrix surrounding the void tip near the matrix layer interface and 
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propagates into blue matrix material de low tin? common iiitoitae-o, the r|treutinn <>f prop- 

agation being nearly to to the vertical axis, The shear bands initiating at points of inter- 

section of the matrix layer interfaces with the right traction free surface propagate into the 

soft layer and then bifurcate into the matrix material along lines making an angle of 

approximately 15: with the vertical. The band in the layer near the upper matrix layer 

interface bifurcates into the matrix prior to that near the lower interface. Also the hand in 

the layer near the upper matrix .-layer interface continues to propagate horizontally into 

the layer too while that near the lower surface does not. In order to elucidate upon the 

differences between these two hands within the soft layer, we have plotted in Figs, (la. Ill) 

and be contours of .- and  in  Figs. 'id. be and bf contours of the temperature rise 0 in ti 
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small region surrounding the layer and near the right traction-free surface. We note that 

the layer material near the upper interface undergoes more severe deformations than the 

layer material near the lower interface. This could be due to the differences in tile reflection 

and refraction of waves at the two interfaces, and the interaction of these waves with the 

loading wave. The bands near the upper and lower interfaces propagate both horizontally 

in the layer and laterally towards each other. Had the computations been carried further, 

it is clear that the two bands will merge with each other. The computations could not be 

carried further because we had exhausted the computing resources available to us. Because 

of the stiff equations and the nonuniform mesh, the time step required to integrate the 

equations is extremely small. The contours of d indicate that the matrix material is also 

being heated up. Since the layer is softer than the matrix material, the stress in it is low 

and higher values of e in the layer give rise to nearly the same value of the energy dissipated 

as the lower values of e in the matrix because the stress in it is higher. The temperature rise 

makes the matrix material softer and the bands propagating in the layer bifurcate into 

two, one travels horizontally into the layer and the other into the matrix material along the 

direction of the maximum shear stress. 

Figure 7 shows the distribution of the vertical component of the velocity at an average 

strain of 0.017 5. tn our work the velocity field is assumed to be continuous throughout the 

0.00 0.00 

Fie. 7.  Distribution of the vertical component of the velocity in the crows-sect ion when the. layer 
material is softer than the matrix material at ytug = tUH75 

Fig. H. Contours of the maximum principal logarithmic strain and temperature rise within « small 
region cneloaing the soft layer near the right traction-free surface at three different values at the 
average strain, u, il yam = 0.0135, b, 8 yIAVg = 0.UIU3. and is, f ym = ti.Ullä 

L44 



44 R. c. liana and 'A. (I 7An\ 

10 
0.04 0.05 0-06 0.07 

Average strain 
0.08 

0.4 

S 0.2 
x 

f 

t/     —",12 

J0 -_ 
3.04 0.06 

Average strain 
0.08 

b 

Pte,.HtU Tlit.' maximum principal logarithmic strain versus the average strain at points .") through H» 
and Lö when the layer material is stronger than the matrix material. Coordinates of these points in the 
*XVe& her reference ront'iyii ration are the same as for points in Fig. ;!a. and are given in the caption 

tit Fig. .'id. 

He. Mi» The maximum principal logiiritlimie strain versus the average strain at points 0, 10, 11 and 
Id rtlieti tiie layer material is stronger than the matrix material. Coordinates of these points in tlu- 
stress nee reference i on figuration are given in the captions of Figs. 3a and 3<\ 
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■ he coordinates of these points in the stress free reference configuration. 

Hg, Sil. The maximum principal logarithmic strain versus the average strain at points i. 2, :! and Hi 
when the lavrr material is stronger than the matrix material. .See Fig. "la m\i[ :ih fnr thv inordinate 

of these point* in the stress free reference configuration. 
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region. However, tlii- plottni velni/itv Held i ines show that the value of r, increases sharply 

a> one ci^isses tin- -T-vereiv ilefonninu region thus supporting the assertions uratte by 

Trescn [2\ ami Massey |;S]. 

4.J  Utiftr muitn'ni sir**tttjer than the matrix Hwteritd 

Figures Sa* Bh and sc depict the growth of the maximum principal logarithmic strain F 

at several matrix points near the void. The coordinates of these points it) the stress free 

reference configuration are given in the figure captions and their approximate locations are 

shown in Pig. 3a. Re-tilts plotter! in Fig. Sa i.-learlv  indicate that at a nominal strain of 
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Fie. 9, The maximum principal logarithmic strain versus the average strain at points IS through 34 
when the layer material is stronger than the matrix material. Coordinates of these points in the >tress 
free reference configuration are: 18 (0.999. 0.535), 19 (ü.993. 0.5&2.1), 20 (0.890, u.525 L). 21 ,o.U99. 
I1.Ö45). 22 (0.9859, 0.5391), 23 (0.980. 0.5251). 24 (0.99n. 0.52491. 25 t0.98. u.5249), 20 (U,99. u.475 1). 
27 1(1.98. 0.475 1), 28 (0.99.0.4749). 29 (0.98. 0.4749), 30 <ti.S&& 0.4879), 31 (li.OSöi). n.-Himil. 32 [it.&UB. 
11.405). 33 (0.999. 0.455), 34 (0.999. 0.5) 

0.06. the values of e at points Ö, S, 9 and 10 increase sharply, with the rate of growth of * 

at points 8 and 10 being much greater than that at points 5 and 9. Thus the smai! region 

containing points 8, 9 and LO undergoes intense deformations which propagate towards 

point 5. This will become transparent when we subsequently plot the contours off. Recall 

that point 10 is near the void tip that touches the matrix layer interface, point 9 is near 

the interface and on a horizontal line through point 10, point 8 is near the mirlsurface of 

the void, points 7 and 8 are on a horizontal line, point ij is near the other void tip. and 

point .) on a horizontal line through point li. Because the layer material is harder than 

the matrix material, the maximum principal logarithmic strain t at- points 11 and 1- 

adjoinmg points 9 and 10 respectively is considerably less than that at points 9 and 10. 

The values of e versus the average strain at these four points are shown in Fig. Hh. In 

Fig. Sc. we have plotted the evolution of € at points 11 through 17 in the layer. Points 13 

and 14 are on a line through the void tip that makes an angle of 45: with the horizontal, 

point 15 is near the vertical centroidal axis, and point 17 is on the midsurface of the layer 

hut far removed from the void tip. At an average strain of O.Oti. the values of r. at points 

11  through  10 are nearly 40°0 higher than that at [joint 17 and this difference increases 
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with increase in the average .strain. Since points 11 through 15, distributed in the ['aver 

region surrounding the void tip. have undergone the same amount of deformation, it is 

reasonable to conclude that no localization of deformation has occurred ill the layer. The 

plot of ? versus the average strain at points I, '2, % and 16, depicted in Fig. sd. reveals 

that at an average strain of approximately 0.0b. the small region surrounding point 2 

deforms severely and these defonnations propagate towards point 1. We note that point 2 

is near the void tip away from the matrix/layer interface, and points 1 and 2 are near 

the vertical centroidal axis. 
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In the previous case when the layer material was weaker than the matrix material, a 

shear band formed at an average strain of 0.01b. fn that case, the layer material underwent 

severe de formations. However, because of the small thickness of the layer, the overall 

deformations of the body stayer! small. 

We now explore deformations of the layer and matrix materials surrounding points P 

and Q on the right traction-free edge of the block. The coordinates of the selected points in 

the stress free reference configuration are given in the figure captions, and their approxi- 

mate locations are shown in Fig. 9c. Results plotted in Figs. 9a, 9 b and 9c reveal that the 

growth of e at any one of these points is not phenomenal as compared to the average strain 

either in the layer (e.g. at point 17), or in the block (e.g. at point 16), or the overall average 

strain. At an average strain of 0.06, the values of £ at points 26 and 27 in the layer equal 

2.5 times that at point L7, but that at layer points 24 and 25 which are near the upper layer 

interface, are comparable to the value of e at point 17. The values of F. at matrix points 

situated below the matrix layer interface are higher than those at similarly situated 

matrix points above the matrix/layer interface. Thus the shear band initiating from point Q 

and propagating into the matrix material will involve more severe deformations than that 

initiating from point P and propagating into the matrix, Unlike the case of the soft [aver, 

the deformations within the layer do not localize into a shear band. 

Figure 10 depicts contours of e at j» = 0.0388, 0.05, and 0.0572. These reveal that a 

shear band initiating from the void tip abutting the matrix-layer interface propagates 

initially along the interface and then into the matrix material along a line making an angle 

of nearly 45° with the vertical. The shear band initiating from the lower void tip also 

propagates into the matrix material along a line making an angle of approximately 45" 

with the vertical. Two shear bands also initiate from points P and Q on the right traction 

free surface and these propagate into the matrix material along lines making an angle of 

45* with the vertical. Even though it seems that near the vertical eentroidal axis a shear 

band has propagated into the layer, there is no localization of the deformation occurring 

in the layer material. This U evidenced by the plots of s versus the average strain at several 

points in the layer that are included in Fig. 8c. Even though the strain within the layer is 

small, the values of stress are not and the total energy dissipated at a layer particle may be 

comparable to that at a matrix particle. The contours of the temperature rise, not included 

m the paper, support the picture laid out above for the development of tour bands, two 

from the void tips and two from points on the right traction free surface where the layer 

and the matrix materials meet. 

5 Conclusions 

We have studied plane strain thermomechanical deformations of a thermally softening 

viscoplastic body of square i.ross-section and containing two elliptical voids? and two thin 

layers placed symmetrically about the horizontal centroidal axis. The major axes ul the 

voids are aligned with the vertical centroidal axis of the cross-section and one tip of each 

void touches the matrix.layer interface. Two eases, namely when the flow stress in a 

i$uasistatic simple compression test for the layer material equals one-fifth or five times that 

of the matrix material, are studied. When the layer material is weaker than the matrix 

material, two bands initiate from points on the vertical traction free surtaxes where the 

layer and the matrix materials meet. These bands propagate horizontally into the layer and 

also spread out laterally towards each other. The band near the upper layer matrix inter- 
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face is stronger than the one near the lower layer matrix inter tare in the sen^e that the penk 

value ot the maximum principal logarithmic strain in it is higher than that in the band 

near the lower laver matrix interface. These bands eventually cross, the interface and prop- 

agate into the matrix material along the direction of the maximum shearing stress. The 

band near the upper layer matrix interface continues to propagate horizontally too. The 

matrix material surrounding the void tip touching the layer matrix interface undergoes 

severe deformations also. This band initially propagates horizontally along the interface for 

a small distance and then propagates into the matrix material in the direction of the 

maximum shearing stress. 

When the layer material is stronger than the matrix material, two bands initiate from 

points on the vertical traction free .surfaces where the layer * matrix interfaces intersect 

them. These bands propagate into the matrix along the direction of the maximum shearing 

stress. Also bands initiate from each of the void tips. The bands initiating from the void 

tips touching the matrix layer interfaces initially propagate horizontally and then into the 

matrix material in the direction of the maximum shearing stress. The bands initiating from 

the other void tips also propagate into the matrix material in the direction of the maximum 

shear ins stress. In this case no localization of deformation occurs within the layer. The 

average strain at which a shear band forms in this case is nearly four times that in the 

previous case of softer layer material. 
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EFFECT OF THERMAL CONDUCTIVITY ON THE 
INITIATION, GROWTH AND BANDWIDTH OF 

ADIABATIC SHEAR BANDS 

R. C BATRA and C. H. KIM 
Department of Mechanical and Aerospace Engineering and Engineering Mechanics, University of 

Missouri-Rolla, Rolla, MO 65401-0249. U.S.A. 

Abstract—We ascertain the effect of thermal conductivity on the initiation and growth of shear bands 
in a structural steel by analyzing the development of shear bands in a block undergoing overall 
adiabatic simple shearing deformations. The material of the block is assumed to exhibit strain and 
strain-rate hardening, and thermal softening. Three constitutive relations, namely, the Litonski law. 
the Bodner-Partom law. and the Johnson-Cook law, have been used to model the thermoviscopiastic 
response of the material. For each material model, five values of thermal conductivity differing by 
three orders of magnitude have been used. 

It is found .hat an increase in the value of the thermal conductivity delays the initiation and blows 
down the subsequent development of the shear band. For the Litonski law and Johnson-Cook law. 
the band width tends to zero as the thermal conductivity approaches zero However, for the 
Bodner-Partom law. the band width is non-zero even when the thermal conductivity is set equal to 
zero. 

i. INTRODUCTION 

Adiabatic shear banding refers to the localization phenomenon that occurs during high 
strain-rate plastic deformation, such as machining, shock impact loading, ballistic penetration, 
and metal forming processes. As shear binds precede material fracture, the discernment of 
variables that enhance or retard their initiation and growth will make possible design of 
materials and manufacturing techniques that are less conducive to the formation of shear 
bands. Variables that are believed to have a noticeable effect on the development of shear 
bands include material strain-rate sensitivity, thermal diffusivity, thermal softening, strain 
hardening, inertia forces, and the initial temperature of the specimen. Here we explore in some 
detail the effect of the thermal conductivity or the thermal length on the initiation and 
subsequent growth of shear bands in a viscoplastic block undergoing overall adiabatic simple 
shearing deformations at an average strain-rate of 3300 s"' The values of material parameters, 
except for the thermal conductivity, are those for a typical structural steel. Five values of the 
thermal conductivity, namely, 0, 5, 50, 500, and 5000W/m5Ct have been used to assess its 
effect on the development of shear bands. 

In studying the growth of shear bands in the center of a finite slab after initiation at a small 
imperfection, Merzer [1] concluded that the final width of the band depends on the thermal 
diffusivity and the overall strain rate. Wu and Freund [2], in studying the formation of shear 
bands at a moving boundary, concluded that thermal diffusivity has little influence on the final 
shape of the band. The detailed geometry and constitutive equations considered in these two 
papers are different. In both papers, there are two natural length scales, one arising from the 
rate effect in the constitutive equation, and the other from heat conductivity. In, the latter 
paper, these two scales have been arbitrarily set equal to each other, and in the former paper 
the relative effect of heat conductivity has been examined parametrically for the Bodner- 
Partom constitutive relation. Wu and Freund [2] also showed that for linear strain-rate 
sensitivity the shear layer thickness increased with boundary velocity, but the reverse happened 
for logarithmic rate sensitive materials. Possible reasons for opposing effects of thermal 
conductivity reported in these two papers could be (a) different problems studied, and/or (bj 
different constitutive relations employed. Here we use three constitutive relations, namely, the 
Litonski law. the Bodner-Partom law, and the Johnson-Cook iaw, to model the viscoplastic 
response of the material. It is found that for ail three constitutive relations, the computed band 
width increases with increase in the value of the thermal conductivity, suggesting therebv that 
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the apparently contradictory results reported in the above-cited two papers are due to the 
different phenomenon presumed for the occurrence of adiabatic shear bands. 

In recent years there have been numerous experimental [3-7], analytical [8—15], and 
numerical [16-23] investigations aimed at increasing our understanding of the localization of 
the deformation into shear bands. Shawki and Clifton [24] have reviewed much of the literature 
dealing with the one-dimensional shear banding problem. Recently, there have been a few 
studies [25-35] of the phenomenon of shear banding in plane strain deformations of a 
thermally softening viscoplastic block. Anand et al, [12] have extended the one-dimensional 
perturbation analysis of Clifton and coworkers [36] to three-dimensional problems. They also 
included the effect of hydrostatic pressure on plastic flow, so as to better model the behavior of 
polymeric materials. Their analysis predicts that for pressure-sensitive materials, shear bands 
can initiate in two directions even in simple shear. 

2. FORMULATION OF THE PROBLEM 

In terms of non-dimensional variables, equations governing the dynamic thermomechanical 
deformations of a viscoplastic block undergoing overall adiabatic simple sheanng deformations 
are 

awv = (ws),yt       0<y<L, (2.1) 

w6 = ß(w6y)iy + wsYp,       0<y<l. (2.2) 

i-p(v*-r»)i (2.3) 

y,-*(*.y„0). (2.4) 

Here u, 6, s, yp and w represent, respectively, the velocity of a panicle in the direction of 
shearing taken to be along the x-axis, temperature rise, shear stress, plastic strain, and 
thickness of the block. Furthermore, ß is the thermal diffusivity, p is the shear modulus, a 
signifies the effect of inertia forces, relative to the flow stress of the material, a superimposed 
dot indicates material time privative, and a comma followed by y implies partial 
differentiation with respect to y. Equation (2.1) expresses the balance of linear momentum, 
equation (2.2) the balance of internal energy, equation (2.3) Hooke's law written in the rate 
form, and equation (2.4) is a constitutive relation for yp. The viscoplastic flow rules differ in the 
functional forms of g. Fourier's law of heat conduction has been used in equation (2.2). Also, 
we have assumed that the shear strain-rate has additive decomposition into elastic and plastic 
parts, and all of the plastic working, given by the second term on the right-hand side of 
equation (2.2), is convened into heat. We note that Sulijoadikusumo and Dillon [37] and 
Fairen and Taylor [38] found that only 90-95% of the plastic work done is responsible for 
raising the temperature of the body. 

The dimensional variables, indicated below by a supenmposed bar, are related to the 
non-dimensional variables as follows: 

y = yH,       w » wH,       t = tH/v0,       d = B60,       S0 = a()ipc, 

s = soQ,       ac = ßVo/o0t       /4 = jua0j       ß ■ k/(pcv0H), 

% = YpVo/H. (2.5) 

In equation (2.5), H is the height of the block, v0 is the final value of the speed imposed on the 
top surface of the block, p is the mass density, t is the time elapsed, a0 is the yield stress in a 
quasistatic simple shear test, k is the thermal conductivity, and c is the specific heat. Hereafter, 
we drop the superimposed bars and indicate a dimensional quantity by specifying its units. 

For the initial and boundary conditions we take 

0(y,O)«O,        u(y,0) = 0,       s(y,0) = 0,        yp{y, 0) = 0, 

0,(0,0 = 0,       0,(l,r) = O,       v(0, 0 = 0, 

v(l,0 = '/0.01,       0s r< 0.01, 

■1. f 25 0.01. (2.6) 
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That is, the block is initially stress free, is undeformed, is at rest, and has a uniform 
temperature, normalized to be zero. The overall deformations of the block are taken to be 
adiabatic and the lower surface is at rest, whereas the upper surface is assigned a velocity that 
increases from 0 to 1 in a non-dimensional time of 0.01 and then stays equal to 1.0 The block 
is taken to be thinnest at the center, y = :, and thickest at the boundary surfaces, v = 0, 1, with 
the thickness variation given by 

"(>') = *b[l + -sin(i + 2V)JTJ. (2.7) 

We note that Marchand and Duffy [7] reported nearly 10% variation in the thickness of the 
steel tubes they tested in torsion. Our choice of locating the thinnest section at the center is for 
convenience only and should not affect the computed results. 

3. VISCOPLASTIC FLOW RULES 

3.1 Litonski's law 

Wright and Batra (18) modified the Litonski law to account tor elastic unloading of a 
material point. They postulated that 

A »max 0, 

7P = AJ, (3.1) 

(3.2) 

rp 

s 

(l-v«),l+i 

\j>~sYP/(l + y>IyQ)n. (3.3) 

We may view y as an internal variable that describes the work hardening of the material. Its 
evolution equation (3.3) implies^hat the rate of growth of \p is proportional to the plastic 
working. In equation (3.2), (1 - v0) describes the softening of the material as a result of its 
heating, b and m characterize -its strain-rate sensitivity, and v'o and n its work hardening. 
Equations (3.1) and (3.2) imply that 

y„*0   if   «*(l-ve)(l+v/vX (3.4) 

Thus s »(1- v0)(l + ty/y0)n describes a loading surface, and if the local state given by 
(5, ip, 6) lies inside or on this surface, the plastic strain-rate is zero and the material then is 
deforming elastically. Besides a0, which has been used to non-dimensionaiize stress-like 
quantities, five material parameters, v, b, m, y/0, and n are needed to specify the viscoplastic 
response of the material. 

3.2 Bodner-Partom law 

Bodner and Partom [39] assumed that there is no loading surface and that plastic strain-rate 
ypt albeit very small at low values of s, is always non-zero. Their constitutive relation can be 
written as 

fc-*«p[-j(p)"].       «-f**. «3.5) 
z = zx-(zx- 2o)exp(-mWp), {3 6) 

Wp*5yp. 13.7) 

Here T is the absolute temperature of a material particle. Wp is the plastic work done, : may be 
regarded as an internal variable, and Dn is the limiting value of the plastic strain-rate, usually 
taken as I08s"1  Besides £>0, 

we need to specify a, z{, :{), m. and b to characterize the material 
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3.3 Johnson-Cook law 
Johnson and Cook [40] tested 12 materials in simple shear and compression at different 

strain-rates and found that 

YP = exp 
\(A + RvnM\ -fv)     ' i 

(3.8) 

f *(ö-Ö0)/(Öm-e0). (3.9) 

describe well the test data. For 6m equal to the melting temperature of the material and 00 

equal to the ambient temperatur- ^ey tabulated values of A, B, n, v, and C for 12 materials. 
It should be noted that there is n       ding surface assumed in this case, too. 

4. RESULTS 

4.1 Computational considerations 
The governing equations (2.1)-(2.4) with the function g given by one of the flow rules 

described in the previous section are highly nonlinear, and are difficult to solve analytically 
under the side conditions (2.5) and (2.6). An approximate solution of these equations has been 
computed numerically by using the finite element method. The partial differential equations 
(2.1)~(2.4) are first reduced to a set of coupled nonlinear ordinary differential equations by 
using the Galerkin approximation. The stiff ordinary differential equations are integrated with 
respect to time by the Gear method [41]. For this purpose, the subroutine LSODE included in 
the package ODEPACK developed by Hindmarsh (42) is used. The subroutine adjusts the time 
tncrement adaptively until a solution of the stiff ordinary differential equations has been 
computed to the desired accuracy. 

In the computation of results given below, the following values of various material 
parameters were used: p » 7860 kg/m3. a0 * 405 MPa, and c * 473 J/kg°C; 

(a) Utonski's law: v»6 x KTVK, y/0=»0,012, m »0.01872, n »0.054, and b - 104s; 
(b) Bodner-Partom law: t*o* 1000,  z,» 3.778,  ZT»3.185, m»15, a » 1800°K, and 

fc»Q; 
(c) Johnson-Cook law: A »0.275, fl» 1.433, C»36, n »0.054, v^0.8, Bm » 1800°K 

and0o = 3OO°K. 
The values of geometric parameters used are # = 2.5 mm, w0» 0.38 mm, and 6 = 0.05. The 
values of the material parameters given above are such that for üc = 50W/m°C and average 
strain-rate of 3300s"', the average shear stress sa versus the average shear strain yJvg curve 
approximated well the experimental stress-strain curve tor HY-100 steel given by Marchand 
and Duffy [7]. The average shear stress sa is defined as 

sa *    s(y, t) dy. 
JO 

For 7avg- 3300 s"1. the inertia effects ^^ not play a noticeable role, and the shear stress 
depends upon v mainly because of the dependence of w upon y. Subsequently, the values of 
material parameters and the average strain-rate were kept fixed, and results were computed for 
k =0, 5. 50, 500, and 5000W/m°C. These results are identified below as follows. 

Curve type fc(W/m*C) 

50 
500 

5000 

For the Utonskt law. and for k =0 and 5 W/m°C results couid not be computed satisfactorily 
once the shear stress began to drop precipitously. 
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4.2 Numerical results 

Figure 1 depicts the average shear stress sa versus the average shear strain ydVi, curves for the 
three constitutive models and the five values of the thermal conductivity k. For each 
constitutive relation used, the sa-yavg curves for k = Q and 5W/m°C are essentially identical 
with each other. The value of ya%s[ at which sa begins to drop increases a little with an increase 
in the value of the thermal conductivity. However, the rate of stress drop decreases 
dramatically as the value of k is increased from 50 to 500 W/m°C as compared with that when 
k is increased from 5 to 50W/m°C. For each value of k considered, the value of ya^ when 
the average shear stress sa becomes maximum is the least for the Johnson-Cook lavs The 
sa-yaV| curves look alike for the Litonski law and the Bodner-Partom law. except that the rate 
of stress drop is a little less for the Bodner-Partom law than for the Litonski law. 

Figure 2 depicts the evolution of the homologous temperature, defined as the ratio of the 
absolute temperature of a matenal point to the melting temperature of the material, at the 
center of the specimen. Because of the non-dimensional variables being used herein, the 
horizontal scale representing the average strain can also be interpreted as the time elapsed. For 
each of the three constitutive relations used, the rate of temperature rise is largest tor k - 0 and 
decreases as the value of k is increased. For k -0 and 5 W/m°C, the Johnson-Cook law gives 
the steepest rise in the temperature at the specimen center. It should be recalled that the shear 
stress is greatest at the specimen center because the thickness there is the least. For 
k - 50 W/m°C. the Litonski law gives the most rapid rate of temperature increase at the center 
of the specimen. The value of yav| when the temperature at the specimen center begins to rise 
sharply  is different  for the three  constitutive  relations.   For /c = 5000W,mT  and  for 

rig   1   Awrage ihear stress vs average snear strain for '.he three constitutive relations jno ?he n\e 
values of the thermal conductivity (a) Litonski. *b) Bodner-Partom, (c) Johnson-Cook 
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Fig. 2. Evolution of the homolofous temperature at the center of the specimen for the three 
constitutive relations and five values of the thermal conductivity, (a) Utonski. <b) Bodner-Partom, 

(c) Johnson-Cook. 

0<y»vt<l> the temperature at the specimen center increases nearly linearly for each of the 
three constitutive relations used, except that for the Bodner-Partom law the slope of the dH vs. 
y,V| curve increases at y,v|^0A As the value of k increases, the heat conducted away from 
the central hotter region to the outer parts of the specimen increases and the rate of 
temperature nse at the specimen center decreases. Because of the adiabatic boundary 
conditions assumed, the temperature everywhere in the specimen increases. 

As a significant part of the temperature rise, occurs after the shear stress has attained its 
maximum value, we have plotted in Fig. 3 the homologous temperature dH at the specimen 
center versus sjsm„. For the Litonski law and the Johnson-Cook law, the OH-SC/S^* curve 
corresponding to fc = 50W/m°C shows a second-order transition at sjs^ =0.945 and 0.92 
respectively. For each of the three constitutive relations studied herein, the value of dH, when 
sJSm* ■ 1.0, appears to be independent of fc. This value of SH equals 0.2, 0.21, and 0.214 for 
the Johnson-Cook law, the Bodner-Partom law, and the Litonski law respectively. For the 
Bodner-Partom law, the dH-sJsmvi curves for the five values of k are essentially straight lines, 
and the slope of the straight line decreases with an increase in the value of k. It should be 
noted that for fixed values of k and sjsmtxi the temperature rise at the specimen center 
depends upon the constitutive relation employed. This is because the three constitutive 
relations give different rates of stress drop. 

Figure 4 shows the shear strain at the specimen center, yIoc, versus the average strain. The 
curves for the Bodner-Partom law differ from those for the Litonski law and the Johnson- 
Cook law. For the Bodner-Partom law, with an ncrease in the value of k, the slope of the 
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Fig. 3. Homologous ttnpcrtturt Ä tht specimen center v* sjsmam. U) Lttonski. (b) Bodner-Partom. 
(c) Johiwon-Cook. 

ykK-y«vg curve when sjsnuai< I decreases. For the Litonski law and the Johnson-Cook law, 
the yioc-y.vt curves for fc-SOW/m'C show similar qualitative behavior. However, yloc 

increases more rapidly for the Litonski law than that for the other two constitutive relations. 
For k * 5000 W/m 9C, Yu* increases very slowly, mainly because most of the heat developed 
near the specimen center due to plastic working is conducted away. For k - 500 W/m °C and 
the Litonski law, the local strain seems to have i-eached the saturation value at yavg = 0.S2. A 
similar behavior'was observed for the Johnson-Cook law at yav?=1.5, but not for the 
Bodner-Partom law up to yavt * 4,0. 

We recall that the thermal softening ts described by essentially similar functions tn the 
Litonski law and the Johnson-Cook law, but by a totally different functional relationship tn the 
Bodner-Partom law. We believe that it ts the difference tn the thermal softening behavior 
stipulated in the three constitutive relations that accounts for the difference in the evolution of 
the temperature and hence the local strain at the specimen center. 

A measure of the localization of the deformation at the specimen center is the ratio of the 
shear strain there to the average strain in the specimen. As localization of the deformation 
occurs in earnest when the shear stress has started to drop precipitously, we have plotted 
yioc/yavg-*a/Sm« »n Fig. 5. For the Bodner-Partom law, the curves for £=0, 5. 50, and 
500 W/m °C essentially coincide with each other, whereas that for k ~ 5000 W/m °C exhibits a 
different trend and suggests that yioc/yavg = 5.5 for sjsmix < 0.80. For k - 5000 W/m X and for 
W-W-O.S, yioc/y«, equals 2.3 for the Johnson-Cook law and 3.1 for the Litonski law. For 
fc = 50 W/m °C, the curve for the Litonski law shows a sharp jump tn the slope at 
s«/Sm«-0.85, indicating the rapid growth of the localization of the deformation at the 
specimen center. By the time the shear stress drops to 80% ot its maximum value, the shear 
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Fig. 4. Evolution of the shear itttm at the specimen center for the three constitutive relm ns and the 
five values of the thermal conductivity, (a) Utontki, (b) Bodner-Partom, (c) Johnson-Cook. 

strain at the specimen center would have increased enormously and the specimen would 
probably have failed. We recall that Marchand and Duffy [7] observed the maximum shear 
strain within the band to be about 20. For k * 500 W/m°C, y^/y^ reached a saturation value 
of 18 for sa/smtx ^0.6 for the Bodner-Partom law. For the other two constitutive relations 
used, /loc/y^y, reached a maximum value of approximately 18 and 20 at sa/^m„-0.7 and 0.62 
for the Litonski law and the Johnson-Cook law respectively. The decrease in the value of 
yioc/Vavc signifies tha' the growth of the shear strain at the specimen center is less than the 
increase in the value of yav|. Thus the width of the severely deformed region must increase. 

Marchand and Duffy [7] defined the band width as the width of the region over which the 
shear strain stays constant. In the problem studied herein, except when k = 500 or 
5000 W/m °C, the band width so computed will be zero. Therefore, we define the band width 
as the width of the region over which the shear stain equals or exceeds 95% of its value at the 
specimen center. As the localization of the deformation depends upon how far the shear stress 
has dropped from us peak value, we have plotted in Fig. 6 the band width versus the 
square-root of the non-dimensional thermal conductivity ß when Sa/<W = 0.95, 0.90, 0.85. 
0.80, 0.75, and 0.70. The reason for selecting {ß)ia rather than ß as abscissa is that Dodd and 
Bai [431 found the band width to be proportional to (ß)irz It is clear that the dependence of the 
band width upon the thermal conductivity is nonlinear and is different for each of the three 
constitutive relations used. The band width decreases with a decrease in the value of the 
thermal conductivity. For the Litonski law and the Johnson-Cook law, the band width tends to 
zero as the thermal conductivity decreases to zero, but such is not the case for the 
Bodner-Partom law. For this law and for k = 0, the computed band width depends upon how 
far the shear stress at the specimen center has dropped. We note that the depicted curves were 
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obtained by joining data points with straight lines rather than fitting a smooth curve through 
the data points. These curves do not support Dodd and Bai's result that the band width is 
proportional to (0)1'-. 

In Fig. 7 we have plotted the band width as a function of sa/smvl for the five values of the 
thermal conductivity and the three constitutive relations used. For k - 50 and 500 W/m ^C, the 
band width does seem to reach a stable value as the shear stress at the specimen center drops. 
For the utonski law. and for k * 0 and 5 W/m °C. satisfactory results could not be computed 
for $a/smM<0.95. For the same values of k, and with the Johnson-Cook law, sanstactory 
results could not be obtained for sjsmu ^ 0,90. For each of the constitutive relations used, and 
for k » 5000 W/m °C. an interesting situation developed in that the band width decreased first 
as the shear stress at the specimen center dropped. It reached a plateau at saismili =0.85, and 
then started to increase. The rate of decrease and subsequent increase of the band width with 
respect to sjsm„ does depend upon the constitutive relation used. A plausible explanation for 
this computed decrease and increase of the band width is that as the shear stress at the 
specimen center drops and the plastic strain-rate increases sharply, the heat generated as a 
result of plastic working raises the temperature there more than at other points m the 
specimen. Imually, the rate of heat loss to outer pans of the specimen is less than the rate of 
heat generation at the specimen center, and the temperature there nses, making the material 
there softer and thus easier to deform. As the temperature gradient builds up, the rate of heat 
loss increases and eventually equals and exceeds the rate of heat generation at the specimen 
center. Thus the material surrounding the specimen center begins to deform severely, too. and 
the band width increases. 

162 



958 

200 r 

'50 
</> 
o 
o 
6 
c 
Z   100 h 

i 
-6 
c 
co 
03 

50 h 

(a) 

R. C. BATRA and C. H. KIM 

125 r {b) 

t   in 
i   an 

i   i//,'i 
i in; 

i in, 'a 

;y 

i '"/> 
/      III f 

I III 
I 1*1 

I   "I 

/  /// 
/   /// 

/  /' I   t 
<   / 

'/i 

100 

c 
o 

I 7S 
c 

?     SO 
■o 
c 

03 

50      100    150    200     250    300 

/jTx io3 

I J I I ! : ! 
0 50      100     150     200     25C     300 

/Fx 10 3 

250 r 

0 50      100    1S0    200     250    300 

ßx 103 

Rg. 6 Dependence of the band width upon the square-root of the non-dimensional thermal 
conductivity, (a) Utonski, (b) Bodner-Partom. (c) Johnson-Cook. Curve 1, i,/jw =0,95: Curve 2. 
*,/Jm« s 0.90. Curve 3, ^a/5mM = 0.85; Curve 4. *,/*„„ ^ 0.80; Curve 5. ^s^ =0.75: Curve o. 

ia/5^,-0.70. 

5.  CONCLUSIONS 

We have studied the problem of shear band development in a thermally softening 
viscoplastic block undergoing overall adiabatic deformations. The thickness of the block is 
assumed to vary smoothly with the thickness at the specimen center, being 5% smaller than 
that at the outer edges. Three constitutive relations, namely, the Litonski law, the 
Bodner-Partom law. and the Johnson-Cook law, have been used to represent the viscoplastic 
response of the material. The values of the material parameters used are such that each 
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constitutive relation gives essentially the same stress-strain curve as that observed by 
Marchand and Duffy [7] for a HY-100 steel deformed in torsion at a strain-rate of 3300 s"1 

Results have been computed for thermal conductivity k of 0. 5, 50, 500, and 5000 W/m °C. 
For the Bodner-Panom law, ail of the results depend smoothly upon the thermal conductivity. 
Also, from a computational point of view, this constitutive relation was the most stable in the 
sense that satisfactory results could be computed for all values of k considered herein. 

For each of the three constitutive relations studied, the rate of evolution of the temperature 
at the specimen center was steepest for k « 0 and decreased with an increase in the value of k. 
A similar behavior was noted for the development of the shear strain at the specimen center 
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When the time scale is changed to one which is proportional to sa/sm„, the rate of temperature 
nse at the specimen center shows a transition for k - 50 W/m °C both for the Litonski law and 
the Johnson-Cook law. For the Litonski law and also for & = 50W/m°C, the rate of 
localization ratio at the specimen center shows a transition at sa/smiX -0.85. Otherwise, the 
results depend continuously upon sa/sm3ts for the values of k considered herein. 

The computed band \sidth decreases nonlinearly with a decrease in the value of k. Both the 
Litonski law and the Johnson-Cook law predict that the band width will decrease to zero as k 
tends to zero. However, the Bodner-Partom law gives a finite value of the band width for 
k = 0. The band width was not found to be proportional to the square-root of the thermal 
conductivity as asserted by Dodd and Bai. 
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